[1] T. Ren, M.K. Patel, K. Blok, Steam cracking and methane to olefins: energy use, CO2 emission and production costs, Energy 33 (5) (2008).[2] T. Ren, M.K. Patel, K. Blok, Olefin from conventional and heavy feedstock: Energy use in steam cracking and alternative processes, Energy 31 (2006) 425.[3] Sanjeev Kapur, ABB LUMMUS GLOBAL SRT cracking technology for the production of ethylene, in: R.A. Meyers (Ed.), Handbook of Petrochemicals Production Processes, McGraw-Hil, N.Y., 2005, p. 6.3.[4] S. Borsos, S. Ronczy, KBR score ethylene technology, in: R.A.Meyers (Ed.), Handbook of Petrochemicals Production Processes, McGraw-Hill, N.Y., 2005, p. 6.51.[5] H. Zimmermann, R. Walzle, Ethylene, http://media.wiley.com/product_data/ excerpt/55/35273038/3527303855.pdf.[6] L.F. Albright, B.L. Crynes, W.H. Corcoran (Eds.), Pyrolysis: Theory and Industrial Practice, Academic Press, New York, 1983.[7] VNIIOS, Catalytic pyrolysis of petroleum fractions to produce ethylene and propylene, http://www.vniios.ru/english/1.htm 2003.[8] M. Tallman, ACO, The advanced catalytic olefin processes, http://technologyconference. kbr.com/2009/Dubai/conference.[9] Xiao-dong Jihg, Yue-hong Zhao, Hao Wen, Zhi-hong Xu, Research advanced in directly heated cracking of hydrocarbons by heat carrier gas — 1. Pyrolysis apparatus and techniques, Chin. J. Process. Eng. 12 (3) (2012) 527-539.[10] Xiao-dong Jihg, Yue-hong Zhao, HaoWen, Zhi-hong Xu, Research advanced in directly heated cracking of hydrocarbons by heat carrier gas — 2. Pyrolysis process, Chin. J. Process. Eng. 12 (4) (2012) 712-720.[11] R.L. Baldwin, G.R. Kamm, Make ethylene by ACR process, Hydrocarb. Process. 61 (11) (1982) 127.[12] A. Hertzberg, A.T. Mattick, D.A. Russel, Pat. 5 300 216 USA, (1993).[13] A.T.Mattick, C. Knowlen, D.A. Russel, A. Hertzberg, Pyrolysis of hydrocarbons using a shock wave reactor, Proc. 21st International Symposium of Shock Waves, Great Keppel Island, Australia, Paper 3800, 1997.[14] M.G. Ktalkherman, I.G. Namyatov, Pyrolysis of hydrocarbons in a heat-carrier flow with fast mixing of the components, Combust. Explos. Shock Waves 44 (2008)529-534.[15] M.G. Ktalkherman, V.A. Emel'kim, B.A. Pozdnyakov, Influence of the geometrical and gas-dynamic parameters of amixer on the mixing with of radial jets colliding, J. Eng. Phys. Thermophys. 83 (2010) 539-548.[16] N.M. Marinov, W.J. Pitz, C.K. Westbrook, A.M. Vincitore, M.J. Castaidi, S. Sencan, Aromatic and polycyclic hydrocarbons formation in a laminar premixed n-butane flame, Combust. Flame 114 (1998) 192-213.[17] M.G. Ktalkherman, I.G. Namyatov, V.A. Emel'kim, High-temperature pyrolysis of liquefied petroleum gases in fast-mixing reactor, Int. J. Chem. React. Eng. 9 (2011) (Paper A69).[18] C.K. Westbrook, W.J. Pitz, O. Herbinet, H.J. Curran, E.J. Silke, A detailed chemical kinetic reaction mechanism for n-alkane hydrocarbons from n-octane to n-hexadecane, Combust. Flame 156 (2009) 181.[19] W.J. Pitz, C.V. Naik, T.N. Mhaolduin, C.K. Westbrook, H.J. Curran, J.P. Orme, J.M. Simmie, Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine, Proc. Combust. Inst. 31 (1) (2007) 267.[20] R.J. Kee, F.M. Rupley, J.A. Miller, CHEMKIN_II: Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Sandia National Laboratories, Livermore, 1989. (SAND 89_8009B). |