[1] M. López-Abelairas, M. García-Torreiro, T. Lú-Chau, J.M. Lema, A. Steinbüchel, Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures, Biochem. Eng. J. 93(2015) 250-259. [2] J. Chen, L. Zhang, J. Chen, G. Chen, Biosynthesis and characterization of polyhydroxyalkanoate copolyesters in Ralstonia eutropha PHB-4 harboring a low-substrate-specificity PHA synthase PhaC2 Ps from Pseudomonas stutzeri 13171, Chin. J. Chem. Eng. 15(3) (2007) 391-396. [3] Y. Wang, J. Yin, G.Q. Chen, Polyhydroxyalkanoates, challenges and opportunities, Curr. Opin. Biotechnol. 30(30) (2014) 59-65. [4] M.S. Le, Z. Manfred, E. Thomas, T.M. Linda, Q. Ren, Production of mediumchain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440, BMC Biotechnol. 12(1) (2012) 53-64. [5] B.C. Saha, Hemicellulose bioconversion, J. Ind. Microbiol. Biotechnol. 30(5) (2003) 279-291. [6] N. Poomipuk, A. Reungsang, P. Plangklang, Poly-b-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38, Int. J. Biol. Macromol. 65(2014) 51-64. [7] H.S. Kim, Y.H. Oh, Y.A. Jang, K.H. Kang, Y. David, J.H. Yu, B.K. Song, J.I. Choi, Y.K. Chang, J.C. Joo, Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution, Microb. Cell Factories 15(1) (2016) 95-107. [8] D. Queirós, S. Rossetti, L.S. Serafim, PHA production by mixed cultures:A way to valorize wastes from pulp industry, Bioresour. Technol. 157(4) (2014) 197-205. [9] L. Huang, L. Chang, Y. Liu, X. Jia, The composition analysis and preliminary cultivation optimization of a PHA-producing microbial consortium with xylose as a sole carbon source, Waste Manag. 52(2016) 77-85. [10] V.S.R.K. Ganduri, S. Ghosh, P.R. Patnaik, Mixing control as a device to increase PHB production in batch fermentations with co-cultures of Lactobacillus delbrueckii and Ralstonia eutropha, Process Biochem. 40(1) (2005) 257-264. [11] F. Cerrone, S.K. Choudhari, R. Davis, D. Cysneiros, V. O'Flaherty, G. Duane, E. Casey, M.W. Guzik, S.T. Kenny, R.P. Babu, Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass, Appl. Microbiol. Biotechnol. 98(2) (2014) 611-620. [12] A. Elain, F.M. Le, Y.M. Corre, G.A. Le, T.V. Le, J.L. Audic, S. Bruzaud, Rapid and qualitative fluorescence-based method for the assessment of PHA production in marine bacteria during batch culture, World J. Microbiol. Biotechnol. 31(10) (2015) 1555-1563. [13] D.K. Kang, C.R. Lee, S.H. Lee, J.H. Bae, Y.K. Park, Y.H. Rhee, B.H. Sung, J.H. Sohn, Production of polyhydroxyalkanoates from sludge palm oil using Pseudomonas putida S12, J. Microbiol. Biotechnol. 27(5) (2017) 990-994. [14] R. Davis, R. Kataria, F. Cerrone, T. Woods, S. Kenny, A. O'Donovan, M. Guzik, H. Shaikh, G. Duane, V.K. Gupta, Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains, Bioresour. Technol. 150(4) (2013) 202-209. [15] J. Mozejko, A. Wilke, G. Przybyłek, S. Ciesielski, Mcl-PHAs produced by Pseudomonas sp. Gl01 using fed-batch cultivation with waste rapeseed oil as carbon source, J. Microbiol. Biotechnol. 22(3) (2012) 371-377. [16] Y. Luo, J. Xiao, Y. Wang, J. Xu, S. Xie, J. Xu, Streptomyces indicus sp. nov., an actinomycete isolated from deep-sea sediment, Int. J. Syst. Evol. Microbiol. 61(11) (2011) 2712-2716. [17] C. Gao, Q. Qi, C. Madzak, C.S. Lin, Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica, J. Ind. Microbiol. Biotechnol. 42(9) (2015) 1255-1262. [18] L. Finkler, Y.P. Ginoris, C.L. Luna, T.L. Alves, J.C. Pinto, M.A.Z. Coelho, Morphological characterization of Cupriavidus necator DSM 545 flocs through image analysis, World J. Microbiol. Biotechnol. 23(6) (2007) 801-808. [19] H.W. Ryu, K.U. Cho, E.G. Lee, Y.K. Chang, Recovery of poly(3-ydroxybutyrate) from coagulated Ralstonia eutropha using a chemical digestion method, Biotechnol. Prog. 16(4) (2010) 676-679. [20] H.W. Ryu, K.S. Cho, Y.K. Chang, H.N. Chang, Cell separation from high cell density broths of Alcaligenes eutrophus by using a coagulant, Biotechnol. Tech. 10(12) (1996) 899-904. [21] I. Lupescu, M.C. Eremia, G.V. Savoiu, M. Spiridon, D. Panaitescu, C. Nicolae, M.G. Vladu, A. Stefaniu, Comparative studies on isolation of medium-chain-length Polyhydroxyalkanoates produced by Pseudomonas spp. strains, Rev. Chim. 67(10) (2016) 1957-1962. [22] X.M. Liu, G.P. Sheng, J. Wang, H.Q. Yu, Quantifying the surface characteristics and flocculability of Ralstonia eutropha, Appl. Microbiol. Biotechnol. 79(2) (2008) 187-194. [23] G. Abu-Elreesh, S. Zaki, S. Farag, M.F. Elkady, D. Abd-El-Haleem, Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast, Afr. J. Biotechnol. 10(34) (2013) 6558-6563. [24] K. Goossens, R. Willaert, Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae, Biotechnol. Lett. 32(11) (2010) 1571-1585. [25] F. Bidard, M. Bony, B. Blondin, S. Dequin, P. Barre, The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein, Yeast 11(9) (1995) 809-822. [26] M.C. Bester, D. Jacobson, F.F. Bauer, Many Saccharomyces cerevisiae cell wall protein encoding genes are coregulated by Mss11, but cellular adhesion phenotypes appear only Flo protein dependent, G32(1) (2012) 131-141. [27] O. Kobayashi, H. Yoshimoto, H. Sone, Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae, Curr. Genet. 36(5) (1999) 256-261. [28] J.D. Romano, R. Kolter, Pseudomonas-Saccharomyces interactions:Influence of fungal metabolism on bacterial physiology and survival, J. Bacteriol. 187(3) (2005) 940-948. [29] T. Yuan, Y. Guo, J. Dong, T. Li, T. Zhou, K. Sun, M. Zhang, Q. Wu, Z. Xie, Y. Cai, Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae, Front. Chem. Sci. Eng. 11(1) (2017) 107-116. [30] P. Kahar, E.I. Riyanti, H. Otsuka, H. Matsumoto, C. Kihira, C. Ogino, A. Kondo, Challenges of non-flocculating Saccharomyces cerevisiae haploid strain against inhibitory chemical complex for ethanol production, Bioresour. Technol. 245((2017) 1436-1446. [31] K. Ulaganathan, S. Goud, M. Reddy, U. Kayalvili, Genome engineering for breaking barriers in lignocellulosic bioethanol production, Renew. Sust. Energ. Rev. 74(2017) 1080-1107. [32] D. Gonzálezramos, A.R.G.D. Vries, S.S. Grijseels, M.C. Berkum, S. Swinnen, M. Broek, E. Nevoigt, J.M.G. Daran, J.T. Pronk, A.J.A. Maris, A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations, Biotechnol. Biofuels 9(1) (2016) 173-190. [33] H.S. Kim, N.R. Kim, W. Kim, W. Choi, Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 95(2) (2012) 531-540. [34] G. Du, J. Yu, Metabolic analysis on fatty acid utilization by Pseudomonas oleovorans:mcl-Poly(3-hydroxyalkanoates) synthesis versus b-oxidation, Process Biochem. 38(3) (2002) 325-332. [35] J.J. Bozzola, L.D. Russell, Electron Microscopy:Principles and Techniques for Biologists, Jones and Bartlett, 1999. [36] P. Thonart, M. Custinne, M. Paquot, Zeta potential of yeast cells:Application in cell immobilization, Enzyme Microb. Technol. 4(3) (1982) 191-194. [37] W.Y. Lu, T. Zhang, D.Y. Zhang, C.H. Li, J.P. Wen, L.X. Du, A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension, Biochem. Eng. J. 27(1) (2006) 1-7. [38] H. Ito, Y. Fukuda, K. Murata, A. Kimura, Transformation of intact yeast cells treated with alkali cations, J. Agric. Chem. Soc. Jpn. 48(2) (1983) 341-347. [39] S. Taguchi, M. Yamada, K.I. Matsumoto, K. Tajima, Y. Satoh, M. Munekata, K. Ohno, K. Kohda, T. Shimamura, H. Kambe, A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme, Proc. Natl. Acad. Sci. U.S.A. 105(45) (2008) 17323-17327. [40] A. Hokamura, I. Wakida, Y. Miyahara, T. Tsuge, H. Shiratsuchi, K. Tanaka, H. Matsusaki, Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant Escherichia coli from glucose, J. Biosci. Bioeng. 120(3) (2015) 305-310. [41] X.X. Wei, F. Liu, J. Jian, R.Y. Wang, G.Q. Chen, Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Pseudomonas stutzeri 1317 from unrelated carbon sources, Chin. J. Chem. Eng. 21(9) (2013) 1057-1061. [42] Z. Zheng, Q. Gong, G.Q. Chen, A novel method for production of 3-hydroxydecanoic acid by recombinant Escherichia coli and Pseudomonas putida, Chin. J. Chem. Eng. 12(4) (2004) 550-555. [43] Y. Wang, H. Wu, X. Jiang, G.Q. Chen, Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space, Metab. Eng. 25(2014) 183-193. [44] S. Ohji, A. Yamazoe, A. Hosoyama, K. Tsuchikane, T. Ezaki, N. Fujita, The complete genome sequence of Pseudomonas putida NBRC 14164 confirms high intraspecies variation, Genome Announc. 2(1) (2014) e00029-14. [45] G.Q. Chen, X.R. Jiang, Y. Guo, Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA), Synth. Syst. Biotechnol. 1(4) (2016) 236-242. [46] J. Zhou, Q. Ma, H. Yi, L. Wang, H. Song, Y.J. Yuan, Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility, Appl. Environ. Microbiol. 77(19) (2011) 7023-7030. [47] J. Du, W. Bai, H. Song, Y.J. Yuan, Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonigenium vulgareBacillus cereus consortium, Metab. Eng. 19(2013) 50-56. [48] A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L.S. Tsimring, J. Hasty, Sensing array of radically coupled genetic biopixels, Nature 481(7379) (2012) 39-44. [49] A.A. Eddy, A.D. Rudin, Part of the yeast surface apparently involved in flocculation, J. Inst. Brew. 64(1) (1958) 19-21. [50] B.L. Miki, N.H. Poon, A.P. James, V.L. Seligy, Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae, J. Bacteriol. 150(2) (1982) 878-889. |