中国化学工程学报 ›› 2021, Vol. 32 ›› Issue (4): 1-16.DOI: 10.1016/j.cjche.2020.09.027
• Review • 下一篇
Ekta Chaturvedi, Sukumar Laik, Ajay Mandal
收稿日期:
2019-12-27
修回日期:
2020-09-12
出版日期:
2021-04-28
发布日期:
2021-06-19
通讯作者:
Ajay Mandal
基金资助:
Ekta Chaturvedi, Sukumar Laik, Ajay Mandal
Received:
2019-12-27
Revised:
2020-09-12
Online:
2021-04-28
Published:
2021-06-19
Contact:
Ajay Mandal
Supported by:
摘要: Gas hydrates have recently emerged as a better alternative for the production, storage, and transportation of natural gases. However, factors like slow formation rate and limited storage capacity obstruct the possible industrial application of this technique. Different types of promoters and synergists have been developed that can improve the kinetics and storage capacity of gas hydrates. This review focuses on different kinetic promoters and synergists that can be utilized to enhance the storage capacity of hydrates. The main characteristics, structure and the possible limitations of the use of these promoters are likewise portrayed in detail. The relationship between structure and storage capacity of hydrates have also been discussed in the review. Current status of production of gas from hydrates, their restrictions, and future difficulties have additionally been addressed in the ensuing areas of the review.
Ekta Chaturvedi, Sukumar Laik, Ajay Mandal. A comprehensive review of the effect of different kinetic promoters on methane hydrate formation[J]. 中国化学工程学报, 2021, 32(4): 1-16.
Ekta Chaturvedi, Sukumar Laik, Ajay Mandal. A comprehensive review of the effect of different kinetic promoters on methane hydrate formation[J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 1-16.
[1] I. Mead, International energy outlook 2017, U.S. Energy Inf. Adm., 2017. [2] S. De, S. Bandyopadhyay, M. Assadi, D.A. Mukherjee, Sustainable Energy Technology and Policies, Springer, Singapore (2005). [3] H.P. Veluswamy, A. Kumar, Y. Seo, J.D. Lee, P. Linga, A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates, Appl. Energy 216(2018) 262-285. [4] Z. Sun, R. Ma, S. Fan, K. Guo, R. Wang, Investigation on Gas Storage in Methane Hydrate, J. Nat. Gas Chem. 13(2004) 107-112. [5] K.A. Kvenvolden, Gas hydrates geological perspective and global change, Rev. Geophys. 31(1993) 173-187. [6] E.D. Sloan, C.A. Koh, Clatherate Hydrate of Natural Gases, third, CRC Press, Boca Raton, 2008. [7] A. Demirbas, Methane hydrates as potential energy resource:Part 2-Methane production processes from gas hydrates, Energy Convers. Manag. 51(2010) 1562-1571. [8] C.A. Koh, Towards a fundamental understanding of natural gas hydrates, Chem. Soc. Rev. 31(2002) 157-167. [9] W. Wang, C.L. Bray, D.J. Adams, A.I. Cooper, Methane Storage in Dry Water Gas Hydrates, J. Am. Chem. Soc. 130(2008) 11608-11609. [10] D.-Y. Kim, Y. Park, H. Lee, Tuning clathrate hydrates:Application to hydrogen storage, Catal. Today 120(2007) 257-261. [11] S.M. Lu, A global survey of gas hydrate development and reserves:Specifically in the marine field, Renew. Sustain. Energy Rev. 41(2015) 884-900. [12] J. Carroll, Natural Gas Hydrates:A Guide for Engineers, Gulf Professional Publishing, Falls Church, 2020. [13] I.F. Makogon, I.F. Makogon, Y.F. Makogon, Hydrates of Hydrocarbons, Pennwell Books, London, 1997. [14] J. Chen, Y.H. Wang, X.M. Lang, S.S. Fan, Energy-efficient methods for production methane from natural gas hydrates, J. Energy Chem. 24(2015) 552-558. [15] T.S. Collett, A. Johnson, C.C. Knapp, R. Boswell, Natural Gas Hydrates:Energy Resource Potential and Associated Geologic Hazards, The American Association of petroleum Geologists, Tulsa, 2010. [16] C.D. Ruppel, Gas Hydrate in Nature (No. 2017-3080), US Geological Survey (2018). [17] D. Mech, P. Gupta, J.S. Sangwai, Kinetics of methane hydrate formation in an aqueous solution of thermodynamic promoters (THF and TBAB) with and without kinetic promoter (SDS), J. Nat. Gas Sci. Eng. 35(2016) 1519-1534. [18] Z.G. Sun, R. Wang, R. Ma, K. Guo, S. Fan, Natural gas storage in hydrates with the presence of promoters, Energy Convers. Manag. 44(2003) 2733-2742. [19] G.-Q. Liu, F. Wang, S.-J. Luo, D.-Y. Xu, R.-B. Guo, Enhanced methane hydrate formation with SDS-coated Fe3O4 nanoparticles as promoters, J. Mol. Liq. 230(2017) 315-321. [20] H. Ganji, M. Manteghian, K. Sadaghiani zadeh, M.R. Omidkhah, H. Rahimi Mofrad, Effect of different surfactants on methane hydrate formation rate, stability and storage capacity, Fuel 86(2007) 434-441. [21] G. Bhattacharjee, N. Choudhary, A. Kumar, S. Chakrabarty, R. Kumar, Effect of the amino acid L-histidine on methane hydrate growth kinetics, J. Nat. Gas Sci. Eng. 35(2016) 1453-1462. [22] M. Mohammad-Taheri, A.Z. Moghaddam, K. Nazari, N.G. Zanjani, Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose, J. Nat. Gas Chem. 21(2012) 119-125. [23] L. Cai, B.A. Pethica, P.G. Debenedetti, S. Sundaresan, Formation of cyclopentane methane binary clathrate hydrate in brine solutions, Chem. Eng. Sci. 141(2016) 125-132. [24] B. Tohidi, a. Danesh, a.C. Todd, R.W. Burgass, K.K. Østergaard, Equilibrium data and thermodynamic modelling of cyclopentane and neopentane hydrates, Fluid Phase Equilib. 138(1997) 241-250. [25] J.D. Lee, R. Susilo, P. Englezos, Kinetics of structure H gas hydrates, Energy Fuels 19(2005) 1008-1015. [26] P. Servio, F. Lagers, C. Peters, P. Englezos, Gas hydrate phase equilibrium in the system methane-carbon dioxide-neohexane and water, Fluid Phase Equilib. 158(1999) 795-800. [27] Q. Zhang, G.-J. Chen, Q. Huang, C.-Y. Sun, X.-Q. Guo, Q.-L. Ma, Hydrate formation conditions of a hydrogen + methane gas mixture in tetrahydrofuran + water, J. Chem. Eng. Data 50(2005) 234-236. [28] A.H. Mohammadi, D. Richon, Phase equilibria of clathrate hydrates od tetrahydrofuran+hydrogen sulfide and tetrahydroduran+methane, J. Chem. Eng. Data 55(2009) 982-984. [29] S.-Y. Lee, G.D. Holder, Methane hydrates potential as a future energy source, Fuel Process. Technol. 71(2001) 181-186. [30] G.D. Holder, V.A. Kamath, S.P. Godbole, The potential of natural gas hydrates as an energy resource, Annu. Rev. Energy. 9(1984) 427-445. [31] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates-A potential energy source for the 21st century, J. Pet. Sci. Eng. 56(2007) 14-31. [32] Y.F. Makogon, Natural gas hydrates-a promising source of energy, J. Nat. Gas Sci. Eng. 2(2010) 49-59. [33] C.A. Koh, A.K. Sum, E.D. Sloan, State of the art:natural gas hydrates as a natural resource, J. Nat. Gas Sci. Eng. 8(2012) 132-138. [34] K.A. Kvenvolden, A review of the geochemistry of methane in gas hydrate, Org Geochem. 23(1995) 997-1008. [35] C.F. Pearson, P.M. Halleck, P.L. McGuire, R. Hermes, M. Mathews, Natural gas hydrate deposits:A review of in situ properties, J. Phys. Chem. 87(1983) 4180-4185. [36] E.D. Sloan, Gas hydrates:review of physical/chemical properties, Energy Fuels 12(1998) 191-196. [37] P. Englezos, J.D. Lee, Gas hydrates:A cleaner source of energy and opportunity for innovative technologies, Korean J. Chem. Eng. 22(2005) 671-681. [38] I. Chatti, A. Delahaye, L. Fournaison, J.P. Petitet, Benefits and drawbacks of clathrate hydrates:A review of their areas of interest, Energy Convers. Manag. 46(2005) 1333-1343. [39] J.F. Gabitto, C. Tsouris, Physical properties of gas hydrates:A review, J. Thermodyn. 2010(2010) 1-12. [40] G.D. Holder, N. Pradhan, P. Equilibria, T. Model, Phase behavior in systems containing clathrate hydrates, Rev. Chem. Eng. 5(1988) 1-70. [41] J.A. Ripmeester, S. Alavi, Some current challenges in clathrate hydrate science:nucleation, decomposition and the memory effect, Curr. Opin. Solid State Mater. Sci. 20(2016) 344-351. [42] X.-S. Li, C.-G. Xu, Y. Zhang, X.-K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate:A review, Appl. Energy 172(2016) 286-322. [43] R.G. Grim, A spectroscopic study of the structure and occupancies of clathrate hydrates incorporating hydrogen PhD Thesis, Colorado School of Mines, 2014. [44] A. Khokhar, J. Gudmundsson, E. Sloan, Gas storage in structure H hydrates, Fluid Phase Equilib. 150-151(1998) 383-392. [45] D.Y. Kim, J.W. Lee, Y.T. Seo, J.A. Ripmeester, H. Lee, Structural transition and tuning of tert-butylamine hydrate, Angew. Chem. Int. Ed. 44(2005) 7749-7752. [46] T. Sugahara, J.C. Haag, P.S.R. Prasad, A.A. Warntjes, E.D. Sloan, A.K. Sum, C.A. Koh, Increasing hydrogen storage capacity using tetrahydrofuran, J. Am. Chem. Soc. (2009) 14616-14617. [47] D. Kim, Y. Park, H. Lee, Tuning clathrate hydrates:Application to hydrogen storage, Catal. Today 120(2007) 257-261. [48] H. Lee, J. Lee, D.Y. Kim, J. Park, Y.-T. Seo, H. Zeng, I.L. Moudrakovski, C.I. Ratcliffe, J.A. Ripmeester, Tuning clathrate hydrates for hydrogen storage, Mater. Sustain. Energy (2011) 285-288. [49] D. Kashchiev, A. Firoozabadi, Induction time in crystallization of gas hydrates, J. Cryst. Growth 250(2003) 499-515. [50] E.D. Sloan, F. Fleyfel, A molecular mechanism for gas hydrate nucleation from Ice, AIChE J. 37(1991) 1281-1292. [51] S. Li, S. Fan, J. Wang, X. Lang, CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide, J. Nat. Gas Chem. 18(2009) 15-20. [52] J. Jafar, P. Behzad, S. Fatemeh, Prediction of hydrate formation conditions based on the WP-type models at high pressures, Can. J. Chem. Eng. 89(2011) 254-263. [53] H. Ganji, J. Aalaie, S.H. Boroojerdi, A.R. Rod, Effect of polymer nanocomposites on methane hydrate stability and storage capacity, J. Pet. Sci. Eng. 112(2013) 32-35. [54] Y. Guo, S.S. Fan, K.H. Guo, C. Yong, Methane storage via hydrate formation using calcium hypochlorite as additive, Chem. Ind. Eng. 53(2002) 452-453. [55] C.S. Zhang, S.S. Fan, D.Q. Liang, K.H. Guo, Effect of additives on formation of natural gas hydrate, Fuel 83(2004) 2115-2121. [56] J.B. Klauda, S.I. Sandler, A fugacity model for gas hydrate phase equilibria, Ind. Eng. Chem. Res. 39(2000) 3377-3386. [57] J.S. Sangwai, L. Oellrich, Phase equilibrium of semiclathrate hydrates of methane in aqueous solutions of tetra-n-butyl ammonium bromide (TBAB) and TBAB-NaCl, Fluid Phase Equilib. 367(2014) 95-102. [58] A.H. Mohammadi, J.F. Martínez-López, D. Richon, Determining phase diagrams of tetrahydrofuran+methane, carbon dioxide or nitrogen clathrate hydrates using an artificial neural network algorithm, Chem. Eng. Sci. 65(2010) 6059-6063. [59] C.F.da S. Lirio, F.L.P. Pessoa, A.M.C. Uller, Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF), Chem. Eng. Sci. 96(2013) 118-123. [60] B. Tohidi, J. Yang, A. Chapoy, R. Anderson, M. Arjmandi, Method for Gas Storage, Transport, and Energy Generation, US 2009/0035627 A1(2009) 1-7. [61] Y. Kamata, H. Oyama, W. Shimada, T. Ebinuma, S. Takeya, T. Uchida, J. Nagao, H. Narita, Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 43(2004) 362-365. [62] M. Arjmandi, A. Chapoy, B. Tohidi, Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide, J. Chem. Eng. Data 52(2007) 2153-2158. [63] I. Azevedo, D. Oliveira, I. Soter, V. Segtovich, A. Gomes, B. Jr, F. Wanderley, Accurate thermodynamic description of vapor-liquid and solid-liquid equilibria of THF, water and gas hydrates with a unique set of parameters, J. Chem. Thermodyn. 117(2018) 60-67. [64] S. Fan, L. Yang, Y. Wang, X. Lang, Y. Wen, X. Lou, Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution, Chem. Eng. Sci. 106(2014) 53-59. [65] H. Fakharian, H. Ganji, A.N. Far, M. Kameli, Potato starch as methane hydrate promoter, Fuel 94(2012) 356-360. [66] Y.M. Song, F. Wang, G. Guo, S.J. Luo, R.B. Guo, Energy-efficient storage of methane in the formed hydrates with metal nanoparticles-grafted carbon nanotubes as promoter, Appl. Energy 224(2018) 175-183. [67] G. Bhattacharjee, V. Barmecha, D. Pradhan, R. Naik, K. Zare, R.B. Mawlankar, S. G. Dastager, O.S. Kushwaha, R. Kumar, The biosurfactant surfactin as a kinetic promoter for methane hydrate formation, Energy Procedia 105(2017) 5011-5017. [68] A.N. Nesterov, A.M. Reshetnikov, A.Y. Manakov, T.P. Adamova, Synergistic effect of combination of surfactant and oxide powder on enhancement of gas hydrates nucleation, J. Energy Chem. 26(2017) 808-814. [69] B. Partoon, J. Javanmardi, Effect of mixed thermodynamic and kinetic hydrate promoters on methane hydrate phase boundary and formation kinetics, J. Chem. Eng. Data 58(2013) 501-509. [70] A. Kumar, N. Daraboina, R. Kumar, P. Linga, Experimental investigation to elucidate why tetrahydrofuran rapidly promotes methane hydrate formation kinetics:applicable to energy storage, J. Phys. Chem. C 51(2016) 29062-29068. [71] A. Siangsai, K. Inkong, S. Kulprathipanja, B. Kitiyanan, P. Rangsunvigit, Roles of sodium dodecyl sulfate on tetrahydrofuran-assisted methane hydrate formation, J. Oleo Sci. 67(2018) 707-717. [72] A. Kumar, A. Kumar, R. Kumar, P. Linga, Sodium dodecyl sulfate preferentially promotes enclathration of methane in mixed methane-tetrahydrofuran hydrates, IScience. 14(2019) 136-146. [73] J.W. Choi, J.T. Chung, Y.T. Kang, CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants, Energy 78(2014) 869-876. [74] J. Cai, C. Xu, Z. Chen, X. Li, Environmental effects recovery of methane from coal-bed methane gas mixture via hydrate-based methane separation method by adding anionic surfactants, Energy Sour. Part A Recov. Util. Environ. Eff. 40(2018) 1019-1026. [75] Z. ming Xia, X. sen Li, Z. yang Chen, G. Li, J. Cai, Y. Wang, K. feng Yan, C. gang Xu, Hydrate-based acidic gases capture for clean methane with new synergic additives, Appl. Energy 207(2017) 584-593. [76] X. Li, J. Cai, Z. Chen, C. Xu, Hydrate-based methane separation from the drainage coal-bed methane with tetrahydrofuran solution in the presence of sodium dodecyl sulfate, Energy Fuels 26(2012) 1144-1151. [77] C.Y. Lo, P. Somasundaran, J.W. Lee, Quick assessment of potential hydrate promoters for rapid formation, Geomaterials 2(2012) 63-69. [78] A. Kumar, G. Bhattacharjee, B.D. Kulkarni, R. Kumar, Role of surfactants in promoting gas hydrate formation, Ind. Eng. Chem. Res. 54(2015) 12217-12232. [79] Z. Sun, R. Wang, R. Ma, K. Guo, S. Fan, Effect of surfactants and liquid hydrocarbons on gas hydrate formation rate and storage capacity, Int. J. Energy Res. 27(2003) 747-756. [80] Z. Zhang, Z. Liu, Z. Pan, F.M. Baena-moreno, Effect of porous media and its distribution on methane hydrate formation in the presence of surfactant gas booster, Appl. Energy 261(2020) 114373. [81] Z. Pan, Z. Liu, Z. Zhang, L. Shang, S. Ma, Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS, J. Nat. Gas Sci. Eng. 56(2018) 266-280. [82] H. Najibi, M.M. Shayegan, H. Heidary, Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS, J. Nat. Gas Sci. Eng. 23(2015) 315-323. [83] M. Ricaurte, C. Dicharry, X. Renaud, J.P. Torré, Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation, Fuel 122(2014) 206-217. [84] H. Kakati, A. Mandal, S. Laik, Effect of SDS/THF on thermodynamic and kinetic properties of formation of hydrate from a mixture of gases (CH4+C2H6+C3H8) for storing gas as hydrate, J. Energy Chem. 25(2016) 409-417. [85] D. Li, S. Sheng, Y. Zhang, D. Liang, Effects of multiwalled carbon nanotubes on CH4 hydrate in the presence of tetra-n-butyl ammonium bromide, RSC Adv. (2018) 10089-10096. [86] D.F. Evans, Self-organization of amphiphiles, Langmuir (1988) 3-12. [87] U. Karaaslan, M. Parlaktuna, Surfactants as hydrate promoters? Energy Fuels 14(2000) 1103-1107. [88] J. Du, H. Li, L. Wang, Effects of ionic surfactants on methane hydrate formation kinetics in a static system, Adv. Powder Technol. 25(2014) 1227-1233. [89] H. Pahlavanzadeh, M. Khanlarkhani, S. Rezaei, A.H. Mohammadi, Experimental and modelling studies on the effects of nanofluids (SiO2, Al2O3, and CuO) and surfactants (SDS and CTAB) on CH4 and CO2 clathrate hydrates formation, Fuel 253(2019) 1392-1405. [90] J.S. Zhang, C. Lo, P. Somasundaran, S. Lu, A. Couzis, J.W. Lee, Adsorption of sodium dodecyl sulfate at THF hydrate/liquid interface, J. Phys. Chem. 112(2008) 12381-12385. [91] P. Di Profio, S. Arca, R. Germani, G. Savelli, Surfactant promoting effects on clathrate hydrate formation:Are micelles really involved?, Chem. Eng. Sci. 60(2005) 4141-4145. [92] J.S. Zhang, S. Lee, J.W. Lee, Does SDS micellize under methane hydrateforming conditions below the normal Krafft point?, J. Colloid Interface Sci. 315(2007) 313-318. [93] F. Wang, G. Guo, G.Q. Liu, S.J. Luo, R.B. Guo, Effects of surfactant micelles and surfactant-coated nanospheres on methane hydrate growth pattern, Chem. Eng. Sci. 144(2016) 108-115. [94] N. Choudhary, V.R. Hande, S. Roy, S. Chakrabarty, R. Kumar, Effect of sodium dodecyl sulfate surfactant on methane hydrate formation:A molecular dynamics study, J. Phys. Chem. B 122(2018) 6536-6542. [95] Y. Zhong, R.E. Rogers, Surfactant effects on gas hydrate formation, Chem. Eng. Sci. 55(2000) 4175-4187. [96] J.S. Zhang, S. Lee, J.W. Lee, Kinetics of methane hydrate formation from SDS solution, Ind. Eng. Chem. Res. 46(2007) 6353-6359. [97] J. Yoslim, P. Linga, P. Englezos, Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants, J. Cryst. Growth 313(2010) 68-80. [98] J. Du, H. Li, L. Wang, Cooperative effect of surfactant addition and gas-inducing agitation on methane hydrate formation rate, Fuel 230(2018) 134-137. [99] D. Posteraro, J. Pasieka, M. Maric, P. Servio, The effect of hydrate promoter SDS on methane dissolution rates at the three phase (H-Lw-V) equilibrium condition, J. Nat. Gas Sci. Eng. 35(2016) 1579-1586. [100] K. Watanabe, S. Niwa, Y.H. Mori, Surface tensions of aqueous solutions of sodium alkyl sulfates in contact with methane under hydrate-forming conditions, J. Chem. Eng. Data 50(2005) 1672-1676. [101] K. Okutani, Y. Kuwabara, Y.H. Mori, Surfactant effects on hydrate formation in an unstirred gas/liquid system:An experimental study using methane and sodium alkyl sulfates, Chem. Eng. Sci. 63(2008) 183-194. [102] P. Gayet, C. Dicharry, G. Marion, A. Graciaa, J. Lachaise, A. Nesterov, Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter, Chem. Eng. Sci. 60(2005) 5751-5758. [103] F. Wang, Z. Jia, S. Luo, S. Fu, L. Wang, X. Shi, C. Wang, R. Guo, Effects of different anionic surfactants on methane hydrate formation, Chem. Eng. Sci. 137(2015) 896-903. [104] N. Ando, Y. Kuwabara, Y.H. Mori, Surfactant effects on hydrate formation in an unstirred gas/liquid system:An experimental study using methane and micelle-forming surfactants, Chem. Eng. Sci. 73(2012) 79-85. [105] Y.A. Kwon, J.M. Park, K.E. Jeong, C.U. Kim, T.W. Kim, H.J. Chae, S.Y. Jeong, J.H. Yim, Y.K. Park, J. dong Lee, Synthesis of anionic multichain type surfactant and its effect on methane gas hydrate formation, J. Ind. Eng. Chem. 17(2011) 120-124. [106] T. Daimaru, A. Yamasaki, Y. Yanagisawa, Effect of surfactant carbon chain length on hydrate formation kinetics, J. Pet. Sci. Eng. 56(2007) 89-96. [107] C. Dicharry, J. Diaz, M. Ricaurte, Influence of the carbon chain length of a sulfate-based surfactant on the formation of CO2, CH4 and CO2-CH4 gas hydrates, Chem. Eng. Sci. 152(2016) 735-746. [108] G. Bhattacharjee, V. Barmecha, O.S. Kushwaha, R. Kumar, Kinetic promotion of methane hydrate formation by combining anionic and silicone surfactants:scalability promise of methane storage due to prevention of foam formation, J. Chem. Thermodyn. 117(2018) 248-255. [109] M. keshavarz Moraveji, A. Ghaffarkhah, A. Sadeghi, Effect of three representative surfactants on methane hydrate formation rate and induction time, Egypt. J. Pet. 26(2017) 331-339. [110] H.I. Pe, O. Elizalde-solis, J. Ramon, A. Zu, F. Sanchez-minero, Methane hydrate formation and dissociation in synperonic PE/F127, CTAB, and SDS surfactant solutions, J. Chem. Eng. Data 63(2018) 2477-2485. [111] A. Fazlali, S.A. Kazemi, M. Keshavarz-Moraveji, A.H. Mohammadi, Impact of different surfactants and their mixtures on methane-hydrate formation, Energy Technol. 1(2013) 471-477. [112] U. Karaaslan, M. Parlaktuna, Promotion effect of polymers and surfactants on hydrate formation rate, Energy Fuels 16(2002) 1413-1416. [113] D.D. Link, E.P. Ladner, H.A. Elsen, C.E. Taylor, Formation and dissociation studies for optimizing the uptake of methane by methane hydrates, Fluid Phase Equilib. 211(2003) 1-10. [114] H. Roosta, S. Khosharay, F. Varaminian, Experimental study of methane hydrate formation kinetics with or without additives and modeling based on chemical affinity, Energy Convers. Manag. 76(2013) 499-505. [115] V.K. Saw, M. Gudala, G. Udayabhanu, A. Mandal, S. Laik, Kinetics of methane hydrate formation and its dissociation in presence of non-ionic surfactant Tergitol, J. Unconv. Oil Gas Resour. 6(2014) 54-59. [116] E. Chaturvedi, N. Prasad, A. Mandal, Enhanced formation of methane hydrate using a novel synthesized anionic surfactant for application in storage and transportation of natural gas, J. Nat. Gas Sci. Eng. 56(2018) 246-257. [117] I.M. Banat, Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation:A review, Bioresour. Technol. 51(1995) 1-12. [118] A. Arora, S.S. Cameotra, R. Kumar, C. Balomajumder, A.K. Singh, B. Santhakumari, P. Kumar, S. Laik, Biosurfactant as a promoter of methane hydrate formation:thermodynamic and kinetic studies, Sci. Rep. 6(2016) 20893. [119] R. Rogers, G. Zhang, J. Dearman, C. Woods, Investigations into surfactant/gas hydrate relationship, J. Pet. Sci. Eng. 56(2007) 82-88. [120] S. Jadav, N. Sakthipriya, M. Doble, J.S. Sangwai, Effect of biosurfactants produced by Bacillus subtilis and Pseudomonas aeruginosa on the formation kinetics of methane hydrates, J. Nat. Gas Sci. Eng. 43(2017) 156-166. [121] Q. Sun, B. Chen, X. Li, X. Guo, L. Yang, The investigation of phase equilibria and kinetics of CH4 hydrate in the presence of bio-additives, Fluid Phase Equilib. 452(2017) 143-147. [122] M. Aliabadi, A. Rasoolzadeh, F. Esmaeilzadeh, A. Alamdari, Experimental study of using CuO nanoparticles as a methane hydrate promoter, J. Nat. Gas Sci. Eng. 27(2015) 1518-1522. [123] V. Govindaraj, D. Mech, G. Pandey, R. Nagarajan, J.S. Sangwai, Kinetics of methane hydrate formation in the presence of activated carbon and nanosilica suspensions in pure water, J. Nat. Gas Sci. Eng. 26(2015) 810-818. [124] H. Pahlavanzadeh, S. Rezaei, M. Khanlarkhani, M. Manteghian, A.H. Mohammadi, Kinetic study of methane hydrate formation in the presence of copper nanoparticles and CTAB, J. Nat. Gas Sci. Eng. 34(2016) 803-810. [125] M. Abdi-Khanghah, M. Adelizadeh, Z. Naserzadeh, H. Barati, Z. Zhang, Methane hydrate formation in the presence of ZnO nanoparticle and SDS:application to transportation and storage, J. Nat. Gas Sci. Eng. 54(2018) 120-130. [126] M. Rahmati-Abkenar, M. Manteghian, H. Pahlavanzadeh, Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles, Chem. Eng. Res. Des. 120(2017) 325-332. [127] V.D. Chari, D.V.S.G.K. Sharma, P.S.R. Prasad, S.R. Murthy, Methane hydrates formation and dissociation in nano silica suspension, J. Nat. Gas Sci. Eng. 11(2013) 7-11. [128] A. Mohammadi, M. Manteghian, A.H. Mohammadi, A. Jahangiri, Induction time, storage capacity, and rate of methane hydrate formation in the presence of SDS and silver nanoparticles, Chem. Eng. Commun. 204(2017) 1420-1427. [129] S.S. Park, E.J. An, S.B. Lee, W. gee Chun, N.J. Kim, Characteristics of methane hydrate formation in carbon nanofluids, J. Ind. Eng. Chem. 18(2012) 443-448. [130] L. Dongliang, P. Hao, L. Deqing, Thermal conductivity enhancement of clathrate hydrate with nanoparticles, Int. J. Heat Mass Tran. 104(2017) 566-573. [131] P.C. Mishra, S.K. Nayak, S. Mukherjee, Thermal Conductivity of Nanofluids-An Extensive Literature Review, Int. J. Eng. Res. Technol. 2(2013) 734-745. [132] X. Wang, D. Zhu, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chem. Phys. Lett. 470(2009) 107-111. [133] S. Said, V. Govindaraj, J. Herri, Y. Ouabbas, A study on the influence of nano fluids on gas hydrate formation kinetics and their potential:Application to the CO2 capture process, J. Nat. Gas Sci. Eng. 32(2016) 95-108. [134] S. Arjang, M. Manteghian, A. Mohammadi, Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa, Chem. Eng. Res. Des. 1(2012) 1050-1054. [135] H. Kakati, A. Mandal, S. Laik, Promoting effect of Al2O3/ZnO-based nanofluids stabilized by SDS surfactant on CH4+ C2H6+ C3H8 hydrate formation, J. Ind. Eng. Chem. 35(2016) 357-368. [136] J.D. Lee, H. Kim, Y.S. Kim, Y. Kim, M.S. Lee, Synthesis of Nanosized TiO2-AgSiO2 sols by modified sol-gel method and their application for methane hydrate formation, Solid State Phenom. 124(2007) 1059-1062. [137] J. Pasieka, S. Coulombe, P. Servio, Investigating the effects of hydrophobic and hydrophilic multi-wall carbon nanotubes on methane hydrate growth kinetics, Chem. Eng. Sci. 104(2013) 998-1002. [138] N.J. Kim, S.S. Park, H.T. Kim, W. Chun, A comparative study on the enhanced formation of methane hydrate using CM-95 and CM-100 MWCNTs, Int. Commun. Heat Mass Transf. 38(2011) 31-36. [139] S.S. Park, S.B. Lee, N.J. Kim, Effect of multi-walled carbon nanotubes on methane hydrate formation, J. Ind. Eng. Chem. 16(2010) 551-555. [140] F. Wang, Y. Song, G. Liu, G. Guo, S. Luo, R. Guo, Rapid methane hydrate formation promoted by Ag & SDS-coated nanospheres for energy storage, Appl. Energy 213(2018) 227-234. [141] F. Wang, S. Luo, S. Fu, Z. Jia, M. Dai, Methane hydrate formation with surfactants fixed on the surface of polystyrene nanospheres, J. Mater. Chem. A 3(2015) 8316-8323. [142] O. Nashed, B. Partoon, B. Lal, K.M. Sabil, A.M. Shariff, Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation, J. Nat. Gas Sci. Eng. 55(2018) 452-465. [143] H.P. Veluswamy, P.Y. Lee, K. Premasinghe, P. Linga, Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation, Ind. Eng. Chem. Res. 56(2017) 6145-6154. [144] J.-H. Sa, G.-H. Kwak, B.R. Lee, D.-H. Park, K. Han, K.-H. Lee, Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation, Sci. Rep. 3(2013) 2428. [145] H. Roosta, A. Dashti, S.H. Mazloumi, F. Varaminian, The dual effect of amino acids on the nucleation and growth rate of gas hydrate in ethane + water, methane + propane + water and methane + THF + water systems, Fuel 212(2018) 151-161. [146] P.S.R. Prasad, B.S. Kiran, Are the amino acids thermodynamic inhibitors or kinetic promoters for carbon dioxide hydrates? J. Nat. Gas Sci. Eng. 52(2018) 461-466. [147] C.B. Bavoh, B. Partoon, B. Lal, G. Gonfa, S. Foo, A.M. Sharif, Inhibition effect of amino acids on carbon dioxide hydrate, Chem. Eng. Sci. 171(2017) 331-339. [148] C.B. Bavoh, O. Nashed, M. Saad Khan, B. Partoon, B. Lal, A.M. Sharif, The impact of amino acids on methane hydrate phase boundary and formation kinetics, J. Chem. Thermodyn. 117(2017) 48-53. [149] M.S. Khan, B. Partoon, C.B. Bavoh, B. Lal, N.B. Mellon, Influence of tetramethylammonium hydroxide on methane and carbon dioxide gas hydrate phase equilibrium conditions, Fluid Phase Equilib. 440(2017) 1-8. [150] C.B. Bavoh, M.S. Khan, B. Lal, N.I. Bt Abdul Ghaniri, K.M. Sabil, New methane hydrate phase boundary data in the presence of aqueous amino acids, Fluid Phase Equilib. 478(2018) 129-133. [151] H. Prakash, A. Kumar, R. Kumar, P. Linga, An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application, Appl. Energy 188(2017) 190-199. [152] Y. Cai, Y. Chen, Q. Li, L. Li, H. Huang, S. Wang, W. Wang, CO2 hydrate formation promoted by a natural amino acid L-methionine for possible application to CO2 capture and storage, Energy Technol. 5(2017) 1195-1199. [153] J.H. Sa, G.H. Kwak, K. Han, D. Ahn, K.H. Lee, Gas hydrate inhibition by perturbation of liquid water structure, Sci. Rep. 5(2015) 1-9. [154] S. Abbasian Rad, K. Rostami Khodaverdiloo, M. Karamoddin, F. Varaminian, K. Peyvandi, Kinetic study of amino acids inhibition potential of Glycine and lleucine on the ethane hydrate formation, J. Nat. Gas Sci. Eng. 26(2015) 819-826. [155] Y. Liu, B. Chen, Y. Chen, S. Zhang, W. Guo, Y. Cai, B. Tan, W. Wang, Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage, Energy Technol. 3(2015) 815-819. [156] P.S.R. Prasad, B. Sai Kiran, Clathrate hydrates of greenhouse gases in the presence of natural amino acids:storage, transportation and separation applications, Sci. Rep. 8(2018) 1-10. [157] H. Roosta, A. Dashti, S. Hossein Mazloumi, F. Varaminian, Inhibition and promotion effects of modified HECs and modified starches on the growth rate of hydrate in methane-propane-water system, J. Mol. Liq. 243(2017) 553-563. [158] J.D. Lee, H. Wu, P. Englezos, Cationic starches as gas hydrate kinetic inhibitors, Chem. Eng. Sci. 62(2007) 6548-6555. [159] S. Al-Adel, J.A.G. Dick, R. El-Ghafari, P. Servio, The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics, Fluid Phase Equilib. 267(2008) 92-98. [160] A. Kumar, T. Sakpal, R. Kumar, Influence of low-dosage hydrate inhibitors on methane clathrate hydrate formation and dissociation kinetics, Energy Technol. 411008(2015) 717-725. [161] W. Wang, Z. Huang, H. Chen, Z. Tan, Methane hydrates with a high capacity and a high formation rate promoted by biosurfactants, Chem. Comm. 95(2012) 11638-11640. [162] H.R. Mofrad, H. Ganji, K. Nazari, M. Kameli, A.R. Rod, M. Kakavand, Rapid formation of dry natural gas hydrate with high capacity and low decomposition rate using a new effective promoter, J. Pet. Sci. Eng. 147(2016) 756-759. [163] Q. Sun, B. Chen, Y. Li, Z. Xu, X. Guo, X. Li, W. Lan, L. Yang, Promotion effects of mung starch on methane hydrate formation equilibria/rate and gas storage capacity, Fluid Phase Equilib. 475(2018) 95-99. [164] S.M. Babakhani, A. Alamdari, Effect of maize starch on methane hydrate formation/dissociation rates and stability, J. Nat. Gas Sci. Eng. 26(2015) 1-5. [165] E. Desa, Submarine methane hydrates-potential fuel resource of the 21st century, Proc. of AP Akademi of Sci. 5(2001) 101-114. [166] R. Boswell, T.S. Collett, Current perspectives on gas hydrate resources, Energy Environ. Sci. 4(2011) 1206-1215. [167] Y. Song, L. Yang, J. Zhao, W. Liu, M. Yang, Y. Li, Y. Liu, Q. Li, The status of natural gas hydrate research in China:A review, Renew. Sustain. Energy Rev. 31(2014) 778-791. [168] T.D. Lorenson, T.S. Collett, National gas hydrate program expedition 01 off shore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry, Mar. Pet. Geol. 92(2018) 477-492. [169] K.M. Shukla, T.S. Collett, P. Kumar, U.S. Yadav, R. Boswell, M. Frye, M. Riedel, I. Kaur, K. Vishwanath, National gas hydrate program expedition O2:Identification of gas hydrate prospects in the Krishna-Godavari basin, offshore India, Mar. Pet. Geol. 108(2019) 167-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||