[1] A. Kumar, K.A. Subramanian, Control of greenhouse gas emissions (CO2, CH4, and N2O) of a biodiesel (B100) fueled automotive diesel engine using increased compression ratio, Appl. Therm. Eng. 127(2017) 95-105. [2] S. Gu, B. Gao, L. Teng, Y. Li, C. Fan, S. Iglauer, D. Zhang, X. Ye, Monte Carlo simulation of supercritical carbon dioxide adsorption in carbon slit pores, Energy Fuels 31(9) (2017) 9717-9724. [3] L. Teng, Y. Li, Q. Hu, D. Zhang, X. Ye, S. Gu, C. Wang, Experimental study of nearfield structure and thermo-hydraulics of supercritical CO2 releases, Energy 157(2018) 806-814. [4] P. Christoff, The promissory note:COP 21 and the Paris Climate Agreement, Environ. Politics 25(5) (2016) 1-23. [5] G. Giacchetta, M. Leporini, B. Marchetti, Technical and economic analysis of different cogeneration systems for energy production from biomass, Int. J. Prod. Quality Manage. 13(3) (2014) 289-309. [6] S. Martynov, S. Brown, H. Mahgerefteh, V. Sundara, S. Chen, Y. Zhang, Modelling three-phase releases of carbon dioxide from high-pressure pipelines, Process Saf. Environ. Prot. 92(1) (2014) 36-46. [7] S. Gu, Y. Li, L. Teng, Q. Hu, D. Zhang, X. Ye, C. Wang, J. Wang, S. Iglauer, A new model for predicting the decompression behavior of CO2 mixtures in various phases, Process Saf. Environ. Prot. 120(2018) 237-247. [8] S. Gu, Y. Li, L. Teng, C. Wang, Q. Hu, D. Zhang, X. Ye, J. Wang, S. Iglauer, An experimental study on the flow characteristics during the leakage of high pressure CO2 pipelines, Process Saf. Environ. Prot. 125(2019) 92-101. [9] H.J. Sang, S.K. Min, Compressor selection methods for multi-stage reliquefaction system of liquefied CO2 transport ship for CCS, Appl. Therm. Eng. 82(2015) 360-367. [10] H. Li, J. Yan, Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes, Appl. Energy 86(12) (2009) 2760-2770. [11] C. Kunze, H. Spliethoff, Assessment of oxy-fuel pre-and post-combustionbased carbon capture for future IGCC plants, Appl. Energy 94(6) (2012) 109-116. [12] H. Mahgerefteh, S. Brown, G. Denton, Modelling the impact of stream impurities on ductile fractures in CO2 pipelines, Chem. Eng. Sci. 74(22) (2012) 200-210. [13] K. Damen, A. Faaij, W. Turkenburg, Health, Safety and environmental risks of underground CO2 storage-overview of mechanisms and current knowledge, Clim. Change 74(1-3) (2006) 289-318. [14] Q. Zhao, Y. Li, S. Li, Influence of impurities in pipeline on the temperature drop of supercritical carbon dioxide throttling, Acta Petrolei Sinica 37(2016) 111-116. [15] O. Garciavalladares, Review of numerical simulation of capillary tube using refrigerant mixtures, Appl. Therm. Eng. 24(7) (2004) 949-966. [16] S.A. Mathias, J.G. Gluyas, C.M. Oldenburg, C.F. Tsang, Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs, Int. J. Greenhouse Gas Control 4(5) (2010) 806-810. [17] C.M. Oldenburg, Joule-Thomson cooling due to CO2 injection into natural gas reservoirs, Energy Convers. Manage. 48(6) (2007) 1808-1815. [18] K. Li, X. Zhou, R. Tu, Q. Xie, X. Jiang, The flow and heat transfer characteristics of supercritical CO2, leakage from a pipeline, Energy 71(21) (2014) 665-672. [19] P. Zhang, Modelling brittle fracture propagation in the next generation CO2 pipelines, University College London 46(2014) 39-47. [20] S. Martynov, S. Brown, H. Mahgerefteh, V. Sundara, Modelling choked flow for CO2 from the dense phase to below the triple point, Int. J. Greenhouse Gas Control 19(21) (2013) 552-558. [21] L. Teng, D. Zhang, Y. Li, W. Wang, L. Wang, Q. Hu, X. Ye, J. Bian, W. Teng, Multiphase mixture model to predict temperature drop in highly choked conditions in CO2 enhanced oil recovery, Appl. Therm. Eng. 108(2016) 670-679. [22] L. Teng, Y. Li, H. Han, P. Zhao, D. Zhang, Numerical investigation of deposition characteristics of solid CO2 during choked flow for CO2 pipelines, in:201611th International Pipeline Conference:American Society of Mechanical Engineers, (2016)V002T02A4-VT02A4. [23] P. Jadhav, N. Agrawal, Numerical study on choked flow of CO2 refrigerant in helical capillary tube, Int. J. Air-Condition. Refrig. 26(3) (2018) 1850027. [24] D. Huang, H. Quack, G.L. Ding, Experimental study of throttling of carbon dioxide refrigerant to atmospheric pressure, Appl. Therm. Eng. 27(11) (2007) 1911-1922. [25] T.A. Demetriades, R.S. Graham, A new equation of state for CCS pipeline transport:calibration of mixing rules for binary mixtures of CO2 with N2, O2 and H2, J. Chem. Thermodyn. 93(2016) 294-304. [26] E.D. Visser, C. Hendriks, M. Barrio, M.J. Mølnvik, G.D. Koeijer, S. Liljemark, Y.L. Gallo, Dynamis CO2 quality recommendations, Int. J. Greenhouse Gas Control 2(4) (2008) 478-484. [27] Z. Ziabakhshganji, H. Kooi, Sensitivity of Joule-Thomson cooling to impure CO2 injection in depleted gas reservoirs, Appl. Energy 113(6) (2014) 434-451. [28] S.X. Hou, G.C. Maitland, J.P.M. Trusler, Measurement and modeling of the phase behavior of the (carbon dioxide + water) mixture at temperatures from 298.15 K to 448.15 K, J. Supercrit. Fluids 73(97) (2013) 87-96. [29] Dongping Huang, Guoliang Ding, Hans Quack, Experimental observation and empirical estimation of formation of solid carbon dioxide in safety valves for refrigerating system, HVAC&R Res. 13(1) (2007) 16. |