[1] A.A.A.A. Al-Rashed, A. Shahsavar, O. Rasooli, M.A. Moghimi, A. Karimipour, M. D. Tran, Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink, Int. Commun. Heat Mass Transfer 112(2019) 118-126. [2] A.A.A.A. Al-Rashed, A. Shahsavar, S. Entezari, M.A. Moghimi, S.A. Adio, T.K. Nguyen, Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink:Thermal performance and thermodynamic considerations, Appl. Therm. Eng. 155(2019) 247-258. [3] N.H. Naqiuddin, L.H. Saw, M.C. Yew, F. Yusof, T.C. Ng, M.K. Yew, Overview of micro-channel design for high heat flux application, Renew. Sustain. Energy Rev. 82(2018) 901-914. [4] B. Ramos-Alvarado, P. Li, H. Liu, A. Hernandez-Guerrero, CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells, Appl. Therm. Eng. 31(2011) 2494-2507. [5] Y.L. Zhai, G.D. Xia, X.F. Liu, Y.F. Li, Exergy analysis and performance evaluation of flow and heat transfer in different micro heat sinks with complex structure, Int. J. Heat Mass Transf. 84(2015) 293-303. [6] H.-C. Chiu, J.-H. Jang, H.-W. Yeh, M.-S. Wu, The heat transfer characteristics of liquid cooling heat sink containing microchannels, Int. J. Heat Mass Transf. 54(2011) 34-42. [7] V. Leela Vinodhan, K.S. Rajan, Computational analysis of new microchannel heat sink configurations, Energy Convers. Manage. 86(2014) 595-604. [8] L.C. Joshi, S. Singh, S.R. Kumar, A review on enhancement of heat transfer in microchannel exchanger, Int. J. Innovative Sci. Eng. Technol. 9(2014) 529-535. [9] A. Razmjou, G. Eshaghi, Y. Orooji, E. Hosseini, A. Habibnejad Korayem, F. Mohagheghian, Y. Boroumand, A. Noorbakhsh, M. Asadnia, V. Chen, Lithium ion-selective membrane with 2D subnanometer channels, Water Res. 159(2019) 313-323. [10] S. Arefi-Oskoui, A. Khataee, M. Safarpour, Y. Orooji, V. Vatanpour, A review on the applications of ultrasonic technology in membrane bioreactors, Ultrason. Sonochem. 58(2019) 104633. [11] H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M. Lütfi Yola, N. Atar, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Razmjou, S. Agarwal, V. Kumar Guptao, An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples, J. Mol. Liq. 310(2020) 113185. [12] S. Arefi-Oskoui, A. Khataee, M. Safarpour, Y. Orooji, V. Vatanpour, A review on the applications of ultrasonic technology in membrane bioreactors, Ultrason. Sonochem. 58(2019), 104633. [13] F. Ejeian, S. Azadi, A. Razmjou, Y. Orooji, A. Kottapalli, M. Ebrahimi Warkiani, M. Asadniaa, Design and applications of MEMS flow sensors:A review, Sensor Actuat. A-Phys. 295(2019) 483-502. [14] P. Gholami, L. Dinpazhoh, A. Khataee, Y. Orooji, Sonocatalytic activity of biochar-supported ZnO nanorods in degradation of gemifloxacin:Synergy study, effect of parameters and phytotoxicity evaluation, Ultrason. Sonochem. 55(2019) 44-56. [15] R. Hassandoost, S.R. Pouran, A. Khataee, Y. Orooji, S.W. Joo, Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visiblelight-active photocatalysts for decontamination of oxytetracycline, J. Hazard. Mater. 376(2019) 200-211. [16] Y. Orooji et al., Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds, Ceram. Int. 45(2019) 20844-20854. [17] I.A. Ghani, N.A.C. Sidik, N. Kamaruzaman, Hydrothermal performance of microchannel heat sink:The effect of channel design, Int. J. Heat Mass Transf. 107(2017) 21-44. [18] J. Xu, J. Zhou, Y. Gan, Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes, Energy Convers. Manage. 46(2005) 313-334. [19] X.F. Peng, G.P. Peterson, Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat Mass Transf. 39(1996) 2599-2608. [20] H.Y. Zhang, D. Pinjala, T.N. Wong, K.C. Toh, Y.K. Joshi, Single-phase liquid cooled microchannel heat sink for electronic packages, Appl. Therm. Eng. 25(2005) 1472-1487. [21] L. Biswal, S. Chakraborty, S.K. Som, Design and optimization of single-phase liquid cooled microchannel heat sink, IEEE Trans. Compon. Packag. Technol. 32(2009) 876-886. [22] P. Li, Y. Luo, D. Zhang, Y. Xie, Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin, Int. J. Heat Mass Transf. 119(2018) 152-162. [23] S. Parvin, R. Nasrin, M. Alim, N. Hossain, A.J. Chamkha, Thermal conductivity variation on natural convection flow of water-alumina nanofluid in an annulus, Int. J. Heat Mass Transf. 55(2012) 5268-5274. [24] A. Aghanajafi, D. Toghraie, B. Mehmandoust, Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct, Physica E 85(2017) 103-108. [25] P. Barnoon, D. Toghraie, Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium, Powder Technol. 325(2018) 78-91. [26] A. Shahsavar, S. Khanmohammadi, A. Karimipour, M. Goodarzi, A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity:A new approach of GMDH type of neural network, Int. J. Heat Mass Transf. 131(2019) 432-441. [27] A. Shahsavar, S. Khanmohammadi, D. Toghraie, H. Salihepour, Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis:Measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles, J. Mol. Liq. 276(2019) 850-860. [28] J. Alsarraf, A. Moradikazerouni, A. Shahsavar, M. Afrand, H. Salehipour, M.D. Tran, Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model, Phys. A 520(2019) 275-288. [29] M. Soto-Moscoso, H. HassanKarimi-Maleh, B. Ganesh Kumar, S. Rajendran, J. Qin, S. Vadivel, D. Durgalakshmi, F. Gracia, Y. Orooji, F. Karimi, Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration, J. Mol. Liq. 314(2020) 113588. [30] A.I. Alsabery, R. Mohebby, A.J. Chamkha, I. Hashim, Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder, Chemcial Engineering Science 201(2019) 247-263. [31] A.S. Dogonchi, T. Armaghani, A.J. Chamkha, D.D. Ganji, Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field, Arab. J. Sci. Eng. 44(2019) 7919-7931. [32] Y. Menni, A. Azzi, A.J. Chamkha, Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path, J. Therm. Anal. Calorim. 135(2019) 1951-1976. [33] J. Reza, F. Mobarek-Oudina, A.J. Chamkha, Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects, Multidiscipline Modeling Mater. Struct. 15(2019) 737-757. [34] A.I. Alsabery, M.A. Ismael, A.J. Chamkha, I. Hashim, Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater, J. Therm. Anal. Calorim. 135(2019) 729-750. [35] F. SElimefendigil, H.F. Oztop, A.J. Chamkha, Role of magnetic field on forced convection of nanofluid in a branching channel, Int. J. Numer. Methods Heat Fluid Flow 30(2019) 1755-1772. [36] F.H. Ali, H.K. Hamzah, K. Egab, M. Arici, A. Shahsavar, Non-Newtonian nanofluid natural convection in a U-shaped cavity under magnetic field, Int. J. Mech. Sci. 186(2020), 105887. [37] A. Shahsavar, M. Rashidi, M. Monfared Mosghani, D. Toghraie, P. Talebizadehsardari, A numerical investigation on the influence of nanoadditive shape on the natural convection and entropy generation inside a rectangle-shaped finned concentric annulus filled with boehmite alumina nanofluid using two-phase mixture model, J. Therm. Anal. Calorim. 141(2020) 915-930. [38] S. Rostami, A. Shahsavar, G.R. Kefayati, A. Shahsavar Goldanlou, Energy and exergy analysis of using turbulator in a parabolic trough solar collector filled with mesoporous silica modified with copper nanoparticles hybrid nanofluid, Energies 13(2020) 2946. [39] H.E. Ahmed, B.H. Salman, A.S. Kherbeet, M.I. Ahmed, Optimization of thermal design of heat sinks:A review, Int. J. Heat Mass Transf. 118(2018) 129-153. [40] S.E. Ghasemi, A.A. Ranjbar, M.J. Hosseini, Experimental evaluation of cooling performance of circular heat sinks for heat dissipation from electronic chips using nanofluid, Mech. Res. Commun. 84(2017) 85-89. [41] O.A. Akbari, D. Toghraie, A. Karimipour, Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib, Adv. Mech. Eng. 8(2016) 1-25. [42] M. Bahiraei, S. Heshmatian, Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor:Thermal performance and irreversibility considerations, Energy Convers. Manage. 149(2017) 155-167. [43] M.R. Sohel, R. Saidur, S.S. Khaleduzzaman, T.A. Ibrahim, Cooling performance investigation of electronics cooling system using Al2O3-H2O nanofluid, Int. Commun. Heat Mass Transfer 65(2015) 89-93. [44] M.R. Thansekhar, C. Anbumeenakshi, Heat transfer enhancement of nanofluid cooled microchannel heat sink, Adv. Sci., Eng. Med. 10(2018) 346-350. [45] M.H. Esfe, S. Esfandeh, M. Afrand, M. Rejvani, S.H. Rostamian, Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications, Appl. Therm. Eng. 133(2018) 452-463. [46] E. Shahsavani, M. Afrand, R. Kalbasi, Using experimental data to estimate the heat transfer and pressure drop of non-Newtonian nanofluid flow through a circular tube:Applicable for use in heat exchangers, Appl. Therm. Eng. 129(2018) 1573-1581. [47] A. Asadi, M. Asadi, A. Rezaniakolaei, L.A. Rosendahl, M. Afrand, S. Wongwises, Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications:An experimental and theoretical investigation, Int. J. Heat Mass Transf. 117(2018) (2018) 474-486. [48] G. Rasool, T. Zhang, A.J. Chamkha, A. Shafiq, I. Tlili, G. Shahzadi, Entropy generation and consequences of binary chemical reaction on MHD darcy-forchheimer williamson nanofluid flow over non-linearly stretching surface, Entropy 22(2020) 18. [49] D. Toghraie, R. Mashayekhi, H. Arasteh, S. Sheykhi, M. Niknejadi, A.J. Chamkha, Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions, Int. J. Numer. Methods for Heat & Fluid 30(2019) 1795-1814. [50] S.A.M. Mehryan, E. Izadpanahi, M. Ghalambaz, Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu-Al2O3/water hybrid nanofluid, J. Therm. Anal. Calorim. 137(2019) 965-982. [51] Z. Li, M. Ramzan, A. Shafee, S. Saleem, Q.M. Al-Mdallal, A.J. Chamkha, Numerical approach for nanofluid transportation due to electric force in a porous enclosure, Microsyst. Technol. 25(2019) 2501-2514. [52] A.I. Alsabery, M.A. Ismael, A.J. Chamkha, I. Hashim, Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body, Int. Commun. Heat Mass Transfer 110(2020), 104442. [53] E. Khodabandeh, D. Toghraie, A.J. Chamkha, R. Mashayekhi, O. Akbari, S.A. Rozati, Energy saving with using of elliptic pillows in turbulent flow of two-phase water-silver nanofluid in a spiral heat exchanger, Int. J. Numer. Methods Heat & Fluid 30(2020) 2025-2049. [54] F. Selimefendigil, A.J. Chamkha, MHD mixed convection of nanofluid in a three-dimensional vented cavity with surface corrugation and inner rotating cylinder, Int. J. Numer. Meth. Heat Fluid Flow 30(2019) 1637-1660. [55] Y. Menni, A.J. Chamkha, N. Massarotti, H. Ameur, N. Kaid, M. Bensafi, Hydrodynamic and thermal analysis of water, ethylene glycol and watere-thylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles, Int. J. Numer. Methods Heat & Fluid Flow 30(9) (2020) 4349-4386. [56] T. Tayebi, A.J. Chamkha, Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block, Int. J. Numer. Meth. Heat Fluid Flow 30(2019) 1115-1136. [57] Z. Li, A. Shahsavar, K. Niazi, A.A.A.A. Al-Rashed, S. Rostami, Numerical assessment on the hydrothermal behavior and irreversibility of MgO-Ag/water hybrid nanofluid flow through a sinusoidal hairpin heat-exchanger, Int. Commun. Heat Mass Transfer 115(2020) 104628. [58] V. Kumar, J. Sarkar, Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation, Int. Commun. Heat Mass Transfer 91(2018) (2018) 239-247. [59] A. Arabpour, A. Karimipour, D. Toghraie, The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition, J. Therm. Anal. Calorim. 131(2018) 1553-1566. [60] A. Shahsavar, M. Bahiraei, Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles, Powder Technol. 318(2017) 441-450. [61] A. Shahsavar, M.R. Salimpour, M. Saghafian, M. Shafii, An experimental study on the effect of ultrasonication on thermalconductivity of ferrofluid loaded with carbon nanotubesA, Thermochim. Acta 617(2015) 102-110. [62] W.I. Liu, J. Alsarraf, A. Shahsavar, M. Rostamzadeh, M. Afrand, T.K. Nguyen, Impact of oscillating magnetic field on the thermal-conductivity of water-Fe3O4 and water-Fe3O4/CNT ferro-fluids:Experimental study, J. Magn. Magn. Mater. 484(2019) 258-265. [63] A. Shahsavar, M. Saghafian, M.R. Salimpour, M. Shafii, Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields, Exp. Therm. Fluid Sci. 76(2016) 1-11. [64] A. Shahsavar, M. Saghafian, M.R. Salimpour, M.B. Shafii, Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes, Heat Mass Transf. 52(2016) 2293-2301. [65] A. Shahsavar, M.R. Salimpour, M. Saghafian, M.B. Shafii, Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes, J. Mech. Sci. Technol. 30(2016) 809-815. [66] A. Shahsavar, P. Talebizadeh Sardari, D. Toghraie, Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus, Int. J. Numer. Meth. Heat Fluid Flow 29(2019) 915-934. [67] A. Shahsavar, A. Godini, P.T. Sardari, D. Toghraie, H. Salehipour, Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger, J. Therm. Anal. Calorimetry 137(2019) 1031-1043. [68] J. Alsarraf, R. Rahmani, A. Shahsavar, M. Afrand, S. Wongwises, M.D. Tran, Effect of magnetic field on laminar forced convective heat transfer of MWCNT-Fe3O4/water hybrid nanofluid in a heated tube, J. Therm. Anal. Calorim. 137(2019) 1809-1825. [69] M. Heydari, D. Toghraie, O.A. Akbari, The effect of semi-attached and offset mid-truncated ribs and Water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel, Therm. Sci. Eng. Prog. 2(2017) 140-150. [70] H. Babar, H.M. Ali, Airfoil shaped pin-fin heat sink:Potential evaluation of ferric oxide and titania nanofluids, Energy Convers. Manage. 202(2019) 112194. [71] T. Balaji, C. Selvam, D. Mohan Lala, S. Harish, Enhanced heat transport behavior of micro channel heat sink with graphene based nanofluids, Int. Commun. Heat Mass Trnasfer 117(2020) 104716. |