1 Chen, Y.M., “Recent advances in FCC technology”, Powder Technol., 163, 2-8 (2006). 2 Harris, A.T., Davidson, J.F., Thorpe, R.B., “The prediction of particle cluster properties in the near wall region of a vertical riser”, Powder Technol., 127, 128-143 (2002). 3 Liu, X., Gao, S., Li, J., “Characteristics of particle clusters in gas-solid circulating fluidized beds by using PDPA”, Chin. J. Chem. Eng., 55, 555-562 (2004). 4 Zhang, M., Qian, Z., Hao, Y., Wei, F., “The solid flow structure in a circulating fluidized bed riser/downer of 0.42m diameter”, Powder Technol., 129, 46-52 (2003). 5 Jiang, H., Ouyang, F., Weng, H., “Lumped model for heavy oil cata-lytic cracking reaction (Ⅲ) Simulation calculation of commercial units”, Chin. J. Chem. Eng., 52, 606-611 (2001). 6 Zou, S., Hou, S., Long, J., Zhou, J., Sun, T., Zhang, Z., “Kinetic model of catalytic cracking based on olefin reaction mechanism”, Chin. J. Chem. Eng., 55, 1793-1798 (2004). 7 Weekman, V.W., Nace, D.M., “Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors”, AIChE J., 16, 397-404 (1970). 8 Lee, L.S., Chen, Y.W., Huang, T.N., “Four lump kinetic model for fluid catalytic cracking process”, Can. J. Chem. Eng., 67, 615-619 (1998). 9 Oliveira, L.L., Biscaia, E.C., “Catalytic cracking kinetic models. Parameter estimation and model evaluation”, Ind. Eng. Chem. Res., 28, 264-271 (1989). 10 Jacob, S.H., Gross, B., Voltz, S.E., Weekman, V.M., “A lumping and reaction scheme for catalytic cracking”, AIChE J., 22, 701-713 (1976). 11 Gao, J., Xu, C., Lin, S., Yang, G., “Simulation of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors”, AIChE J., 47, 677-692 (2001). 12 Gupta, A., Subbarao, D., “Model for the performance of fluid catalytic cracking (FCC) riser reactor:Effect of feed atomization”, Chem. Eng. Sci., 56, 4489-4503 (2001). 13 Liu, Z., Meng, X., Xu, C., Gao, J., “Secondary cracking of gasoline and diesel from heavy oil catalytic pyrolysis”, Chin. J. Chem. Eng., 15, 309-314 (2007). 14 Hu, Y., Xu, W., Hou, W., Su, H., Chu, J., “Dynamic modelling and simulation of a commercial naphtha catalytic reforming process”, Chin. J. Chem. Eng., 13, 74-80 (2005). 15 Gidaspow, D., Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions, Academic Press, USA (1994). 16 Zhao, Y., Lu, H., He, Y., Ding, J., Yin, L., “Numerical prediction of combustion of carbon particle clusters in a circulating fluidized bed riser”, Chem. Eng. J., 118, 1-10 (2006). 17 Lee, B.L., Kesler, M.G., “Technical data book-petroleum refining”, American Petroleum Institute, Washington, DC (1988). 18 Jorge, A.J., Felipe, L.I., Enrique, A.R., Juan, C.M.M., “A strategy for kinetic parameter estimation in the fluid catalytic cracking process”, Ind. Eng. Chem. Res., 36, 5170-5174 (1997). 19 Pitault, I., Nevicato, D., Forissier, M., Bernand, J.R., “Kinetic model based on a molecular description for catalytic cracking of vacuum gas oil”, Chem. Eng. Sci., 49, 4249-4262 (1995). 20 Ancheyta-Juarez, J., Aquilar-Rodriquez, E., Moreno-Mayorqa, J.C., “A strategy for kinetic parameter estimation in the fluid catalytic cracking process”, Ind. Eng. Chem. Res., 36, 5170-5174 (1997). 21 Han, I.S., Chung, C.B., “Dynamic modeling and simulation of a fluidized catalytic cracking process (I) process modeling”, Chem. Eng. Sci., 56, 1951-1971 (2001). 22 Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGrawHill, New York (1982). 23 Johnson, T.A., Patel, V.C., “Flow past a sphere up to a Reynolds number of 300”, J. Fluid Mech., 378, 19-70 (1999). |