中国化学工程学报 ›› 2023, Vol. 58 ›› Issue (6): 205-223.DOI: 10.1016/j.cjche.2022.11.001
• Full Length Article • 上一篇 下一篇
Hongwei Liang1,2, Wenling Li1,2, Zisheng Feng1,2, Jianming Chen2, Guangwen Chu1,2, Yang Xiang1,2
收稿日期:
2022-06-09
修回日期:
2022-10-31
出版日期:
2023-06-28
发布日期:
2023-08-31
通讯作者:
Yang Xiang,E-mail:xiangy@mail.buct.edu.cn
基金资助:
Hongwei Liang1,2, Wenling Li1,2, Zisheng Feng1,2, Jianming Chen2, Guangwen Chu1,2, Yang Xiang1,2
Received:
2022-06-09
Revised:
2022-10-31
Online:
2023-06-28
Published:
2023-08-31
Contact:
Yang Xiang,E-mail:xiangy@mail.buct.edu.cn
Supported by:
摘要: In this paper, an improved computational fluid dynamic (CFD) model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal (WA) turbulence model coupled with the population balance model (PBM). Through 18 orthogonal test cases, the optimal combination of interfacial force models, including drag force, lift force, turbulent dispersion force. The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column. The values simulated by optimized CFD model were in agreement with experimental data, and the errors were within ±20%. In addition, the axial velocity, turbulent kinetic energy, bubble size distribution, and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities. This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..
Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model[J]. 中国化学工程学报, 2023, 58(6): 205-223.
Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model[J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223.
[1] Y.C. Fu, Y. Liu, Experimental study of bubbly flow using image processing techniques, Nucl. Eng. Des. 310 (2016) 570-579. [2] T.F. Wang, J.F. Wang, Y. Jin, Slurry reactors for gas-to-liquid processes: A review, Ind. Eng. Chem. Res. 46 (18) (2007) 5824-5847. [3] P. Rollbusch, M. Bothe, M. Becker, M. Ludwig, M. Grünewald, M. Schlüter, R. Franke, Bubble columns operated under industrially relevant conditions—Current understanding of design parameters, Chem. Eng. Sci. 126 (2015) 660-678. [4] A. Bakopoulos, Fluid dynamics and mixing in three-phase coal and oil residue hydrogenation sieve cascade reactors, Chem. Eng. Sci. 56 (17) (2001) 5131-5145. [5] R. Abel, F.J. Resch, A method for the analysis of hot-film anemometer signals in two-phase flows, Int. J. Multiph. Flow. 4 (5-6) (1978) 523-533. [6] A. Esmaeili, C. Guy, J. Chaouki, The effects of liquid phase rheology on the hydrodynamics of a gas-liquid bubble column reactor, Chem. Eng. Sci. 129 (2015) 193-207. [7] M.R. Bhole, S. Roy, J.B. Joshi, Laser Doppler anemometer measurements in bubble column: Effect of sparger, Ind. Eng. Chem. Res. 45 (26) (2006) 9201-9207. [8] E. Delnoij, J.A.M. Kuipers, W.P.M. van Swaaij, J. Westerweel, Measurement of gas-liquid two-phase flow in bubble columns using ensemble correlation PIV, Chem. Eng. Sci. 55 (17) (2000) 3385-3395. [9] M. Batsaikhan, A. Hamdani, H. Kikura, Visualisation of air-water bubbly column flow using array ultrasonic velocity profiler, Theor. Appl. Mech. Lett. 7 (6) (2017) 379-385. [10] W. B. Shi, X.G. Yang, M. Sommerfeld, J. Yang, X.Y. Cai, G. Li, A modified bubble breakage and coalescence model accounting the effect of bubble-induced turbulence for CFD-PBM modelling of bubble column bubbly flows, Flow, Turbul. Combust. 105 (4) (2020) 1197-1229. [11] J. D. Liu, P. Zhou, L. Liu, S. Chen, Y. P. Song, H. J. Yan, CFD modeling of reactive absorption of CO2 in aqueous NaOH in a rectangular bubble column: Comparison of mass transfer and enhancement factor model, Chem. Eng. Sci. 230 (2021) 116218. [12] J.C. Cheng, Q. Li, C. Yang, Y.Q. Zhang, Z.S. Mao, CFD-PBE simulation of a bubble column in OpenFOAM, Chin. J. Chem. Eng. 26 (9) (2018) 1773-1784. [13] R.M.A. Masood, A. Delgado, Numerical investigation of the interphase forces and turbulence closure in 3D square bubble columns, Chem. Eng. Sci. 108 (2014) 154-168. [14] X. P. Guan, Q. S. Xu, N. Yang, K.D.P. Nigam, Hydrodynamics in bubble columns with helically-finned tube Internals: Experiments and CFD-PBM simulation, Chem. Eng. Sci. 240 (2021) 116674. [15] S. Besbes, M. E. Hajem, H. B. Aissia, J.Y. Champagne, J. Jay, PIV measurements and Eulerian-Lagrangian simulations of the unsteady gas-liquid flow in a needle sparger rectangular bubble column, Chem. Eng. Sci. 126 (2015) 560-572. [16] S. Yamoah, R. Martínez-Cuenca, G. Monrós, S. Chiva, R. Macián-Juan, Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow, Chem. Eng. Res. Des. 98 (2015) 17-35. [17] M.M. Rahman, T. Siikonen, R.K. Agarwal, Improved low-Reynolds-number one-equation turbulence model, AIAA J. 49 (4) (2011) 735-747. [18] T.J. Wray, R.K. Agarwal, Application of new one-equation turbulence model to computations of separated flows, AIAA J. 52 (6) (2014) 1325-1330. [19] X. Han, T.J. Wray, C. Fiola, R.K. Agarwal, Computation of flow in S ducts with Wray-Agarwal one-equation turbulence model, J. Propuls. Power 31 (5) (2015) 1338-1349. [20] H. Xu, T.J. Wray, R.K. Agarwal, Application of a new DES model based on Wray-Agarwal turbulence model for simulation of wall-bounded flows with separation, Proceedings of the 47th AIAA Fluid Dynamics Conference, 5-9 June 2017, Denver, Colorado. Reston, Virginia: AIAA, 2017: 3966. [21] X. Han, M.M. Rahman, R.K. Agarwal, Development and application of a wall distance free Wray-Agarwal turbulence model (WA2018), Proceedings of the 2018 AIAA Aerospace Sciences Meeting, 8-12 January 2018, Kissimmee, Florida. Reston, Virginia: AIAA, 2018: 0593. [22] T.S. Wen, R.K. Agarwal, A new extension of wray-agarwal wall distance free turbulence model to rough wall flows, Proceedings of the AIAA Scitech 2019 Forum, 7-11 January 2019, San Diego, California. Reston, Virginia: AIAA, 2019: 1881. [23] Y. Ouyang, K.L. Tang, Y. Xiang, H.K. Zou, G.W. Chu, R.K. Agarwal, J.F. Chen, Evaluation of various turbulence models for numerical simulation of a multiphase system in a rotating packed bed, Comput. Fluids. 194 (2019) 104296. [24] K.L. Tang, Y. Ouyang, R.K. Agarwal, J.M. Chen, Y. Xiang, J.F. Chen, Computation of gas-liquid flow in a square bubble column with Wray-Agarwal one-equation turbulence model, Chem. Eng. Sci. 218 (2020) 115551. [25] Y.L. Shao, R.K. Agarwal, X.D. Wang, B.S. Jin, Application of Wray-Agarwal turbulence model for numerical simulation of gas-solid flows in circulating fluidized bed risers, J. Energy Resour. Technol. 144 (4) (2022) 042103. [26] L.L. Ji, W. Li, W.D. Shi, R.K. Agarwal, Application of Wray-Agarwal turbulence model in flow simulation of a centrifugal pump with semispiral suction chamber, J. Fluids Eng. 143 (3) (2021) 031203. [27] T.F. Wang, J.F. Wang, Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model, Chem. Eng. Sci. 62 (24) (2007) 7107-7118. [28] X.F. Liang, H. Pan, Y.H. Su, Z.H. Luo, CFD-PBM approach with modified drag model for the gas-liquid flow in a bubble column, Chem. Eng. Res. Des. 112 (2016) 88-102. [29] I. Khan, M.J. Wang, Y.P. Zhang, W.X. Tian, G.H. Su, S.Z. Qiu, Two-phase bubbly flow simulation using CFD method: A review of models for interfacial forces, Prog. Nucl. Energy. 125 (2020) 103360. [30] P. Yan, H.B. Jin, G.X. He, X.Y. Guo, L. Ma, S.H. Yang, R.Y. Zhang, Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD-PBM coupled model, Chem. Eng. Res. Des. 154 (2020) 47-59. [31] D.Y. Li, Y.F. Wei, D. Marchisio, QEEFoam: A Quasi-Eulerian-Eulerian model for polydisperse turbulent gas-liquid flows. Implementation in OpenFOAM, verification and validation., Int. J. Multiph. Flow. 136 (2021) 103544. [32] N. Yang, Q. Xiao, A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors, Chem. Eng. Sci. 170 (2017) 241-250. [33] C.T. Xing, T.F. Wang, J.F. Wang, Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column, Chem. Eng. Sci. 95 (2013) 313-322. [34] Y.X. Liao, D. Lucas, A literature review on mechanisms and models for the coalescence process of fluid particles, Chem. Eng. Sci. 65 (10) (2010) 2851-2864. [35] Y.X. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64 (15) (2009) 3389-3406. [36] M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J. 25 (5) (1979) 843-855. [37] L. Schiller, Z. Naumann, A drag coefficient correlation, Z. Ver. Deutsch. Ing. 77 (1935) 318-320. [38] A. Tomiyama, Struggle with computational bubble dynamics, Multiph. Sci. Technol. 10 (4) (1998) 369-405. [39] S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55 (2) (1972) 193-208. [40] S. Grevskott, B.H. Sannæs, M.P. Duduković, K.W. Hjarbo, H.F. Svendsen, Liquid circulation, bubble size distributions, and solids movement in two-and three-phase bubble columns, Chem. Eng. Sci. 51 (10) (1996) 1703-1713. [41] S. Lain, D. Bröder, M. Sommerfeld, Experimental and numerical studies of the hydrodynamics in a bubble column, Chem. Eng. Sci. 54 (21) (1999) 4913-4920. [42] K.I. Sugioka, S. Komori, Drag and lift forces acting on a spherical droplet in homogeneous shear flow, Trans. Japan Soc. Mech. Eng. Part B. 71 (2005) 1519-1526. [43] D.Z. Zhang, W.B. VanderHeyden, The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows, Int. J. Multiph. Flow. 28 (5) (2002) 805-822. [44] M. Simonnet, C. Gentric, E. Olmos, N. Midoux, Experimental determination of the drag coefficient in a swarm of bubbles, Chem. Eng. Sci. 62 (3) (2007) 858-866. [45] M.R. Snyder, O.M. Knio, J. Katz, O.P. le Maître, Statistical analysis of small bubble dynamics in isotropic turbulence, Phys. Fluids. 19 (6) (2007) 065108. [46] E. Loth, Quasi-steady shape and drag of deformable bubbles and drops, Int. J. Multiph. Flow. 34 (6) (2008) 523-546. [47] I. Roghair, Y.M. Lau, N.G. Deen, H.M. Slagter, M.W. Baltussen, M. Van Sint Annaland, J.A.M. Kuipers, On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers, Chem. Eng. Sci. 66 (14) (2011) 3204-3211. [48] M. Rastello, J.L. Marié, M. Lance, Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body rotating flow, J. Fluid Mech. 682 (2011) 434-459. [49] A. Buffo, M. Vanni, P. Renze, D.L. Marchisio, Empirical drag closure for polydisperse gas-liquid systems in bubbly flow regime: Bubble swarm and micro-scale turbulence, Chem. Eng. Res. Des. 113 (2016) 284-303. [50] S. Aoyama, K. Hayashi, S. Hosokawa, A. Tomiyama, Shapes of ellipsoidal bubbles in infinite stagnant liquids, Int. J. Multiph. Flow. 79 (2016) 23-30. [51] J. Y. Feng, I. Bolotnov, Single bubble drag force evaluation in turbulent flow based on DNS results, Trans. Am. Nucl. Soc. 115 (2016) 1649-1652. [52] P.G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech. 22 (2) (1965) 385-400. [53] S.K. Wang, S.J. Lee, O.C. Jones Jr, R.T. Lahey Jr, 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows, Int. J. Multiph. Flow. 13 (3) (1987) 327-343. [54] J. Bataille, M. Lance, Two-fluid modeling versus mechanistic approach and lift effects in bubbly sheared flows, Int. J. Thermophys. 14 (4) (1993) 661-669. [55] R.W. Mei, J.F. Klausner, Shear lift force on spherical bubbles, Int. J. Heat Fluid Flow. 15 (1994) 62-65. [56] J. Magnaudet, D. Legendre, Some aspects of the lift force on a spherical bubble, Appl. Sci. Res. (The Hague). 58 (1997) 441-461. [57] A. Tomiyama, H. Tamai, I. Zun, S. Hosokawa, Transverse migration of single bubbles in simple shear flows, Chem. Eng. Sci. 57 (11) (2002) 1849-1858. [58] F.J. Moraga, F.J. Bonetto, R.T. Lahey, Lateral forces on spheres in turbulent uniform shear flow, Int. J. Multiph. Flow. 25 (6-7) (1999) 1321-1372. [59] A. Ohnuki, H. Akimoto, Model development for bubble turbulent diffusion and bubble diameter in large vertical pipes, J. Nucl. Sci. Technol. 38 (12) (2001) 1074-1080. [60] A. Behzadi, R.I. Issa, H. Rusche, Modelling of dispersed bubble and droplet flow at high phase fractions, Chem. Eng. Sci. 59 (4) (2004) 759-770. [61] R. Adoua, D. Legendre, J. Magnaudet, Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow, J. Fluid Mech. 628 (2009) 23-41. [62] A.S.M.A. Islam, N.A. Adoo, D.J. Bergstrom, Prediction of mono-disperse gas-liquid turbulent flow in a vertical pipe, Int. J. Multiph. Flow. 85 (2016) 236-244. [63] S. Aoyama, K. Hayashi, S. Hosokawa, D. Lucas, A. Tomiyama, Lift force acting on single bubbles in linear shear flows, Int. J. Multiph. Flow. 96 (2017) 113-122. [64] T. Ziegenhein, A. Tomiyama, D. Lucas, A new measuring concept to determine the lift force for distorted bubbles in low Morton number system: Results for air/water, Int. J. Multiph. Flow. 108 (2018) 11-24. [65] O. Marfaing, M. Guingo, J. Laviéville, S. Mimouni, E. Baglietto, N. Lubchenko, B. Magolan, R. Sugrue, B.T. Nadiga, Comparison and uncertainty quantification of two-fluid models for bubbly flows with NEPTUNE_CFD and STAR-CCM+, Nucl. Eng. Des. 337 (2018) 1-16. [66] S.P. Antal, R.T. Lahey Jr, J.E. Flaherty, Analysis of phase distribution in fully developed laminar bubbly two-phase flow, Int. J. Multiph. Flow. 17 (5) (1991) 635-652. [67] T. Frank, J.M. Shi, A.D. Burns, Validation of Eulerian multiphase flow models for nuclear safety application, Proceeding of the Third International Symposium on Two-Phase Modelling and Experimentation, Pisa, Italy. 2004: 22-25. [68] S. Hosokawa, A. Tomiyama, S. Misaki, T. Hamada, Lateral migration of single bubbles due to the presence of wall, In: Proceedings of ASME 2002 Joint U.S.-European Fluids Engineering Division Conference, Montreal, Quebec, Canada, 2002. [69] D.A. Lote, V. Vinod, A.W. Patwardhan, Comparison of models for drag and non-drag forces for gas-liquid two-phase bubbly flow, Multiph. Sci. Technol. 30 (1) (2018) 31-76. [70] V.T. Nguyen, C.H. Song, B.U. Bae, D.J. Euh, The dependence of wall lubrication force on liquid velocity in turbulent bubbly two-phase flows, J. Nucl. Sci. Technol. 50 (8) (2013) 781-798. [71] M.M. Gong, F. Dai, C.S. Li, Z.X. Li, S.J. Zhang, Study on the wall lubrication force for water-air in multi-scale bubble columns and experimental validation, J. Chem. Eng. Japan. 49 (5) (2016) 408-416. [72] N.G. Deen, B.H. Hjertager, T. Solberg, Comparison of PIV and LDA measurement methods applied to the gas-liquid flow in bubble column, In: 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2000. [73] N.G. Deen, An experimental and computational study of fluid dynamics in gas-liquid chemical reactors, Aalborg University, Denmark, 2001. [74] N.G. Deen, T. Solberg, B.H. Hjertager, Large eddy simulation of the gas-liquid flow in a square cross-sectioned bubble column, Chem. Eng. Sci. 56 (21-22) (2001) 6341-6349. [75] J. Gimbun, C.D. Rielly, Z.K. Nagy, Modelling of mass transfer in gas-liquid stirred tanks agitated by Rushton turbine and CD-6 impeller: A scale-up study, Chem. Eng. Res. Des. 87 (4) (2009) 437-451. [76] Y. Sato, K. Sekoguchi, Liquid velocity distribution in two-phase bubble flow, Int. J. Multiph. Flow. 2 (1) (1975) 79-95. [77] D. Pfleger, S. Becker, Modelling and simulation of the dynamic flow behaviour in a bubble column, Chem. Eng. Sci. 56 (4) (2001) 1737-1747. [78] A.A. Troshko, Y.A. Hassan, A two-equation turbulence model of turbulent bubbly flows, Int. J. Multiph. Flow. 27 (11) (2001) 1965-2000. [79] B.V. Tran, S.I. Ngo, Y. I. Lim, K.S. Go, N.S. Nho, A breakage model with different liquid properties for pressurized bubble columns in a homogeneous regime, Korean J. Chem. Eng. 38 (2) (2021) 264-275. [80] F. Lehr, M. Millies, D. Mewes, Bubble-size distributions and flow fields in bubble columns, AIChE J. 48 (11) (2002) 2426-2443. [81] P.G. Saffman, J.S. Turner, On the collision of drops in turbulent clouds, J. Fluid Mech. 1 (1) (1956) 16-30. [82] M. Li, X.Y. Li, H.Z. Wang, Y.B. Xie, H.B. Cao, Numerical simulation of gas-liquid two-phase flow in a bubble column with various drag models, Chin. J. Process Eng. 15 (2) (2015) 181-189, in Chinese. [83] A. Tomiyama, I. Kataoka, I. Zun, T. Sakaguchi, Drag coefficients of single bubbles under normal and micro gravity conditions, JSME Int. J, Ser. B Fluids Therm. Eng. 41 (2) (1998) 472-479. [84] G.L. Lane, M.P. Schwarz, G.M. Evans, Modelling of the interaction between gas and liquid in stirred vessels, In: Proceedings of the 10th European Conference on Mixing, Netherlands, 2000. [85] A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53 (18) (1998) 3295-3314. [86] E. Krepper, M. Beyer, T. Frank, D. Lucas, H.M. Prasser, CFD modelling of polydispersed bubbly two-phase flow around an obstacle, Nucl. Eng. Des. 239 (11) (2009) 2372-2381. [87] X. Miao, D. Lucas, Z. Ren, S. Eckert, G. Gerbeth, Numerical modeling of bubble-driven liquid metal flows with external static magnetic field, Int. J. Multiph. Flow. 48 (2013) 32-45. [88] A.D. Burns, T. Frank, I. Hamill, J.M. Shi, The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows, 5th international conference on multiphase flow, ICMF. ICMF, 2004, 4: 1-17. [89] D.S. Zhang, N.G. Deen, J.A.M. Kuipers, Euler-Euler modeling of flow, mass transfer, and chemical reaction in a bubble column, Ind. Eng. Chem. Res. 48 (1) (2009) 47-57. [90] X.B. Zhang, R.Q. Zheng, Z.H. Luo, CFD-PBM simulation of bubble columns: Effect of parameters in the class method for solving PBEs, Chem. Eng. Sci. 226 (2020) 115853. [91] M. Babanezhad, A. Marjani, S. Shirazian, Multidimensional machine learning algorithms to learn liquid velocity inside a cylindrical bubble column reactor, Sci. Rep. 10 (1) (2020) 21502. [92] M. Pourtousi, J.N. Sahu, P. Ganesan, Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column, Chem. Eng. Process. Process Intensif. 75 (2014) 38-47. [93] T. Frank, J.M. Shi, E. Krepper, Non-drag forces in gas-liquid bubbly flows and validation of existing formulations model formulations, Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany, 2004. [94] R. Sungkorn, J.J. Derksen, J.G. Khinast, Modeling of turbulent gas-liquid bubbly flows using stochastic Lagrangian model and lattice-Boltzmann scheme, Chem. Eng. Sci. 66 (12) (2011) 2745-2757. [95] N.G. Deen, T. Solberg, B.H. Hjertager, Numerical simulation of the gas-liquid flow in a square cross-sectioned bubble column, In: Proceedings of 14th International Congress of Chemical and Process Engineering, Praha, Czech Republic, 2000. [96] D. Zhang, N.G. Deen, J.A.M. Kuipers, Numerical simulation of the dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces, Chem. Eng. Sci. 61 (23) (2006) 7593-7608. [97] E.I.V. van den Hengel, N.G. Deen, J.A.M. Kuipers, Application of coalescence and breakup models in a discrete bubble model for bubble columns, Ind. Eng. Chem. Res. 44 (14) (2005) 5233-5245. [98] D. Darmana, R.L.B. Henket, N.G. Deen, J.A.M. Kuipers, Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of CO2 into NaOH solution, numerical and experimental study, Chem. Eng. Sci. 62 (9) (2007) 2556-2575. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||