[1] Y.C. Fu, Y. Liu, Experimental study of bubbly flow using image processing techniques, Nucl. Eng. Des. 310 (2016) 570-579. [2] T.F. Wang, J.F. Wang, Y. Jin, Slurry reactors for gas-to-liquid processes: A review, Ind. Eng. Chem. Res. 46 (18) (2007) 5824-5847. [3] P. Rollbusch, M. Bothe, M. Becker, M. Ludwig, M. Grünewald, M. Schlüter, R. Franke, Bubble columns operated under industrially relevant conditions—Current understanding of design parameters, Chem. Eng. Sci. 126 (2015) 660-678. [4] A. Bakopoulos, Fluid dynamics and mixing in three-phase coal and oil residue hydrogenation sieve cascade reactors, Chem. Eng. Sci. 56 (17) (2001) 5131-5145. [5] R. Abel, F.J. Resch, A method for the analysis of hot-film anemometer signals in two-phase flows, Int. J. Multiph. Flow. 4 (5-6) (1978) 523-533. [6] A. Esmaeili, C. Guy, J. Chaouki, The effects of liquid phase rheology on the hydrodynamics of a gas-liquid bubble column reactor, Chem. Eng. Sci. 129 (2015) 193-207. [7] M.R. Bhole, S. Roy, J.B. Joshi, Laser Doppler anemometer measurements in bubble column: Effect of sparger, Ind. Eng. Chem. Res. 45 (26) (2006) 9201-9207. [8] E. Delnoij, J.A.M. Kuipers, W.P.M. van Swaaij, J. Westerweel, Measurement of gas-liquid two-phase flow in bubble columns using ensemble correlation PIV, Chem. Eng. Sci. 55 (17) (2000) 3385-3395. [9] M. Batsaikhan, A. Hamdani, H. Kikura, Visualisation of air-water bubbly column flow using array ultrasonic velocity profiler, Theor. Appl. Mech. Lett. 7 (6) (2017) 379-385. [10] W. B. Shi, X.G. Yang, M. Sommerfeld, J. Yang, X.Y. Cai, G. Li, A modified bubble breakage and coalescence model accounting the effect of bubble-induced turbulence for CFD-PBM modelling of bubble column bubbly flows, Flow, Turbul. Combust. 105 (4) (2020) 1197-1229. [11] J. D. Liu, P. Zhou, L. Liu, S. Chen, Y. P. Song, H. J. Yan, CFD modeling of reactive absorption of CO2 in aqueous NaOH in a rectangular bubble column: Comparison of mass transfer and enhancement factor model, Chem. Eng. Sci. 230 (2021) 116218. [12] J.C. Cheng, Q. Li, C. Yang, Y.Q. Zhang, Z.S. Mao, CFD-PBE simulation of a bubble column in OpenFOAM, Chin. J. Chem. Eng. 26 (9) (2018) 1773-1784. [13] R.M.A. Masood, A. Delgado, Numerical investigation of the interphase forces and turbulence closure in 3D square bubble columns, Chem. Eng. Sci. 108 (2014) 154-168. [14] X. P. Guan, Q. S. Xu, N. Yang, K.D.P. Nigam, Hydrodynamics in bubble columns with helically-finned tube Internals: Experiments and CFD-PBM simulation, Chem. Eng. Sci. 240 (2021) 116674. [15] S. Besbes, M. E. Hajem, H. B. Aissia, J.Y. Champagne, J. Jay, PIV measurements and Eulerian-Lagrangian simulations of the unsteady gas-liquid flow in a needle sparger rectangular bubble column, Chem. Eng. Sci. 126 (2015) 560-572. [16] S. Yamoah, R. Martínez-Cuenca, G. Monrós, S. Chiva, R. Macián-Juan, Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow, Chem. Eng. Res. Des. 98 (2015) 17-35. [17] M.M. Rahman, T. Siikonen, R.K. Agarwal, Improved low-Reynolds-number one-equation turbulence model, AIAA J. 49 (4) (2011) 735-747. [18] T.J. Wray, R.K. Agarwal, Application of new one-equation turbulence model to computations of separated flows, AIAA J. 52 (6) (2014) 1325-1330. [19] X. Han, T.J. Wray, C. Fiola, R.K. Agarwal, Computation of flow in S ducts with Wray-Agarwal one-equation turbulence model, J. Propuls. Power 31 (5) (2015) 1338-1349. [20] H. Xu, T.J. Wray, R.K. Agarwal, Application of a new DES model based on Wray-Agarwal turbulence model for simulation of wall-bounded flows with separation, Proceedings of the 47th AIAA Fluid Dynamics Conference, 5-9 June 2017, Denver, Colorado. Reston, Virginia: AIAA, 2017: 3966. [21] X. Han, M.M. Rahman, R.K. Agarwal, Development and application of a wall distance free Wray-Agarwal turbulence model (WA2018), Proceedings of the 2018 AIAA Aerospace Sciences Meeting, 8-12 January 2018, Kissimmee, Florida. Reston, Virginia: AIAA, 2018: 0593. [22] T.S. Wen, R.K. Agarwal, A new extension of wray-agarwal wall distance free turbulence model to rough wall flows, Proceedings of the AIAA Scitech 2019 Forum, 7-11 January 2019, San Diego, California. Reston, Virginia: AIAA, 2019: 1881. [23] Y. Ouyang, K.L. Tang, Y. Xiang, H.K. Zou, G.W. Chu, R.K. Agarwal, J.F. Chen, Evaluation of various turbulence models for numerical simulation of a multiphase system in a rotating packed bed, Comput. Fluids. 194 (2019) 104296. [24] K.L. Tang, Y. Ouyang, R.K. Agarwal, J.M. Chen, Y. Xiang, J.F. Chen, Computation of gas-liquid flow in a square bubble column with Wray-Agarwal one-equation turbulence model, Chem. Eng. Sci. 218 (2020) 115551. [25] Y.L. Shao, R.K. Agarwal, X.D. Wang, B.S. Jin, Application of Wray-Agarwal turbulence model for numerical simulation of gas-solid flows in circulating fluidized bed risers, J. Energy Resour. Technol. 144 (4) (2022) 042103. [26] L.L. Ji, W. Li, W.D. Shi, R.K. Agarwal, Application of Wray-Agarwal turbulence model in flow simulation of a centrifugal pump with semispiral suction chamber, J. Fluids Eng. 143 (3) (2021) 031203. [27] T.F. Wang, J.F. Wang, Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model, Chem. Eng. Sci. 62 (24) (2007) 7107-7118. [28] X.F. Liang, H. Pan, Y.H. Su, Z.H. Luo, CFD-PBM approach with modified drag model for the gas-liquid flow in a bubble column, Chem. Eng. Res. Des. 112 (2016) 88-102. [29] I. Khan, M.J. Wang, Y.P. Zhang, W.X. Tian, G.H. Su, S.Z. Qiu, Two-phase bubbly flow simulation using CFD method: A review of models for interfacial forces, Prog. Nucl. Energy. 125 (2020) 103360. [30] P. Yan, H.B. Jin, G.X. He, X.Y. Guo, L. Ma, S.H. Yang, R.Y. Zhang, Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD-PBM coupled model, Chem. Eng. Res. Des. 154 (2020) 47-59. [31] D.Y. Li, Y.F. Wei, D. Marchisio, QEEFoam: A Quasi-Eulerian-Eulerian model for polydisperse turbulent gas-liquid flows. Implementation in OpenFOAM, verification and validation., Int. J. Multiph. Flow. 136 (2021) 103544. [32] N. Yang, Q. Xiao, A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors, Chem. Eng. Sci. 170 (2017) 241-250. [33] C.T. Xing, T.F. Wang, J.F. Wang, Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column, Chem. Eng. Sci. 95 (2013) 313-322. [34] Y.X. Liao, D. Lucas, A literature review on mechanisms and models for the coalescence process of fluid particles, Chem. Eng. Sci. 65 (10) (2010) 2851-2864. [35] Y.X. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64 (15) (2009) 3389-3406. [36] M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J. 25 (5) (1979) 843-855. [37] L. Schiller, Z. Naumann, A drag coefficient correlation, Z. Ver. Deutsch. Ing. 77 (1935) 318-320. [38] A. Tomiyama, Struggle with computational bubble dynamics, Multiph. Sci. Technol. 10 (4) (1998) 369-405. [39] S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55 (2) (1972) 193-208. [40] S. Grevskott, B.H. Sannæs, M.P. Duduković, K.W. Hjarbo, H.F. Svendsen, Liquid circulation, bubble size distributions, and solids movement in two-and three-phase bubble columns, Chem. Eng. Sci. 51 (10) (1996) 1703-1713. [41] S. Lain, D. Bröder, M. Sommerfeld, Experimental and numerical studies of the hydrodynamics in a bubble column, Chem. Eng. Sci. 54 (21) (1999) 4913-4920. [42] K.I. Sugioka, S. Komori, Drag and lift forces acting on a spherical droplet in homogeneous shear flow, Trans. Japan Soc. Mech. Eng. Part B. 71 (2005) 1519-1526. [43] D.Z. Zhang, W.B. VanderHeyden, The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows, Int. J. Multiph. Flow. 28 (5) (2002) 805-822. [44] M. Simonnet, C. Gentric, E. Olmos, N. Midoux, Experimental determination of the drag coefficient in a swarm of bubbles, Chem. Eng. Sci. 62 (3) (2007) 858-866. [45] M.R. Snyder, O.M. Knio, J. Katz, O.P. le Maître, Statistical analysis of small bubble dynamics in isotropic turbulence, Phys. Fluids. 19 (6) (2007) 065108. [46] E. Loth, Quasi-steady shape and drag of deformable bubbles and drops, Int. J. Multiph. Flow. 34 (6) (2008) 523-546. [47] I. Roghair, Y.M. Lau, N.G. Deen, H.M. Slagter, M.W. Baltussen, M. Van Sint Annaland, J.A.M. Kuipers, On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers, Chem. Eng. Sci. 66 (14) (2011) 3204-3211. [48] M. Rastello, J.L. Marié, M. Lance, Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body rotating flow, J. Fluid Mech. 682 (2011) 434-459. [49] A. Buffo, M. Vanni, P. Renze, D.L. Marchisio, Empirical drag closure for polydisperse gas-liquid systems in bubbly flow regime: Bubble swarm and micro-scale turbulence, Chem. Eng. Res. Des. 113 (2016) 284-303. [50] S. Aoyama, K. Hayashi, S. Hosokawa, A. Tomiyama, Shapes of ellipsoidal bubbles in infinite stagnant liquids, Int. J. Multiph. Flow. 79 (2016) 23-30. [51] J. Y. Feng, I. Bolotnov, Single bubble drag force evaluation in turbulent flow based on DNS results, Trans. Am. Nucl. Soc. 115 (2016) 1649-1652. [52] P.G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech. 22 (2) (1965) 385-400. [53] S.K. Wang, S.J. Lee, O.C. Jones Jr, R.T. Lahey Jr, 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows, Int. J. Multiph. Flow. 13 (3) (1987) 327-343. [54] J. Bataille, M. Lance, Two-fluid modeling versus mechanistic approach and lift effects in bubbly sheared flows, Int. J. Thermophys. 14 (4) (1993) 661-669. [55] R.W. Mei, J.F. Klausner, Shear lift force on spherical bubbles, Int. J. Heat Fluid Flow. 15 (1994) 62-65. [56] J. Magnaudet, D. Legendre, Some aspects of the lift force on a spherical bubble, Appl. Sci. Res. (The Hague). 58 (1997) 441-461. [57] A. Tomiyama, H. Tamai, I. Zun, S. Hosokawa, Transverse migration of single bubbles in simple shear flows, Chem. Eng. Sci. 57 (11) (2002) 1849-1858. [58] F.J. Moraga, F.J. Bonetto, R.T. Lahey, Lateral forces on spheres in turbulent uniform shear flow, Int. J. Multiph. Flow. 25 (6-7) (1999) 1321-1372. [59] A. Ohnuki, H. Akimoto, Model development for bubble turbulent diffusion and bubble diameter in large vertical pipes, J. Nucl. Sci. Technol. 38 (12) (2001) 1074-1080. [60] A. Behzadi, R.I. Issa, H. Rusche, Modelling of dispersed bubble and droplet flow at high phase fractions, Chem. Eng. Sci. 59 (4) (2004) 759-770. [61] R. Adoua, D. Legendre, J. Magnaudet, Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow, J. Fluid Mech. 628 (2009) 23-41. [62] A.S.M.A. Islam, N.A. Adoo, D.J. Bergstrom, Prediction of mono-disperse gas-liquid turbulent flow in a vertical pipe, Int. J. Multiph. Flow. 85 (2016) 236-244. [63] S. Aoyama, K. Hayashi, S. Hosokawa, D. Lucas, A. Tomiyama, Lift force acting on single bubbles in linear shear flows, Int. J. Multiph. Flow. 96 (2017) 113-122. [64] T. Ziegenhein, A. Tomiyama, D. Lucas, A new measuring concept to determine the lift force for distorted bubbles in low Morton number system: Results for air/water, Int. J. Multiph. Flow. 108 (2018) 11-24. [65] O. Marfaing, M. Guingo, J. Laviéville, S. Mimouni, E. Baglietto, N. Lubchenko, B. Magolan, R. Sugrue, B.T. Nadiga, Comparison and uncertainty quantification of two-fluid models for bubbly flows with NEPTUNE_CFD and STAR-CCM+, Nucl. Eng. Des. 337 (2018) 1-16. [66] S.P. Antal, R.T. Lahey Jr, J.E. Flaherty, Analysis of phase distribution in fully developed laminar bubbly two-phase flow, Int. J. Multiph. Flow. 17 (5) (1991) 635-652. [67] T. Frank, J.M. Shi, A.D. Burns, Validation of Eulerian multiphase flow models for nuclear safety application, Proceeding of the Third International Symposium on Two-Phase Modelling and Experimentation, Pisa, Italy. 2004: 22-25. [68] S. Hosokawa, A. Tomiyama, S. Misaki, T. Hamada, Lateral migration of single bubbles due to the presence of wall, In: Proceedings of ASME 2002 Joint U.S.-European Fluids Engineering Division Conference, Montreal, Quebec, Canada, 2002. [69] D.A. Lote, V. Vinod, A.W. Patwardhan, Comparison of models for drag and non-drag forces for gas-liquid two-phase bubbly flow, Multiph. Sci. Technol. 30 (1) (2018) 31-76. [70] V.T. Nguyen, C.H. Song, B.U. Bae, D.J. Euh, The dependence of wall lubrication force on liquid velocity in turbulent bubbly two-phase flows, J. Nucl. Sci. Technol. 50 (8) (2013) 781-798. [71] M.M. Gong, F. Dai, C.S. Li, Z.X. Li, S.J. Zhang, Study on the wall lubrication force for water-air in multi-scale bubble columns and experimental validation, J. Chem. Eng. Japan. 49 (5) (2016) 408-416. [72] N.G. Deen, B.H. Hjertager, T. Solberg, Comparison of PIV and LDA measurement methods applied to the gas-liquid flow in bubble column, In: 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2000. [73] N.G. Deen, An experimental and computational study of fluid dynamics in gas-liquid chemical reactors, Aalborg University, Denmark, 2001. [74] N.G. Deen, T. Solberg, B.H. Hjertager, Large eddy simulation of the gas-liquid flow in a square cross-sectioned bubble column, Chem. Eng. Sci. 56 (21-22) (2001) 6341-6349. [75] J. Gimbun, C.D. Rielly, Z.K. Nagy, Modelling of mass transfer in gas-liquid stirred tanks agitated by Rushton turbine and CD-6 impeller: A scale-up study, Chem. Eng. Res. Des. 87 (4) (2009) 437-451. [76] Y. Sato, K. Sekoguchi, Liquid velocity distribution in two-phase bubble flow, Int. J. Multiph. Flow. 2 (1) (1975) 79-95. [77] D. Pfleger, S. Becker, Modelling and simulation of the dynamic flow behaviour in a bubble column, Chem. Eng. Sci. 56 (4) (2001) 1737-1747. [78] A.A. Troshko, Y.A. Hassan, A two-equation turbulence model of turbulent bubbly flows, Int. J. Multiph. Flow. 27 (11) (2001) 1965-2000. [79] B.V. Tran, S.I. Ngo, Y. I. Lim, K.S. Go, N.S. Nho, A breakage model with different liquid properties for pressurized bubble columns in a homogeneous regime, Korean J. Chem. Eng. 38 (2) (2021) 264-275. [80] F. Lehr, M. Millies, D. Mewes, Bubble-size distributions and flow fields in bubble columns, AIChE J. 48 (11) (2002) 2426-2443. [81] P.G. Saffman, J.S. Turner, On the collision of drops in turbulent clouds, J. Fluid Mech. 1 (1) (1956) 16-30. [82] M. Li, X.Y. Li, H.Z. Wang, Y.B. Xie, H.B. Cao, Numerical simulation of gas-liquid two-phase flow in a bubble column with various drag models, Chin. J. Process Eng. 15 (2) (2015) 181-189, in Chinese. [83] A. Tomiyama, I. Kataoka, I. Zun, T. Sakaguchi, Drag coefficients of single bubbles under normal and micro gravity conditions, JSME Int. J, Ser. B Fluids Therm. Eng. 41 (2) (1998) 472-479. [84] G.L. Lane, M.P. Schwarz, G.M. Evans, Modelling of the interaction between gas and liquid in stirred vessels, In: Proceedings of the 10th European Conference on Mixing, Netherlands, 2000. [85] A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53 (18) (1998) 3295-3314. [86] E. Krepper, M. Beyer, T. Frank, D. Lucas, H.M. Prasser, CFD modelling of polydispersed bubbly two-phase flow around an obstacle, Nucl. Eng. Des. 239 (11) (2009) 2372-2381. [87] X. Miao, D. Lucas, Z. Ren, S. Eckert, G. Gerbeth, Numerical modeling of bubble-driven liquid metal flows with external static magnetic field, Int. J. Multiph. Flow. 48 (2013) 32-45. [88] A.D. Burns, T. Frank, I. Hamill, J.M. Shi, The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows, 5th international conference on multiphase flow, ICMF. ICMF, 2004, 4: 1-17. [89] D.S. Zhang, N.G. Deen, J.A.M. Kuipers, Euler-Euler modeling of flow, mass transfer, and chemical reaction in a bubble column, Ind. Eng. Chem. Res. 48 (1) (2009) 47-57. [90] X.B. Zhang, R.Q. Zheng, Z.H. Luo, CFD-PBM simulation of bubble columns: Effect of parameters in the class method for solving PBEs, Chem. Eng. Sci. 226 (2020) 115853. [91] M. Babanezhad, A. Marjani, S. Shirazian, Multidimensional machine learning algorithms to learn liquid velocity inside a cylindrical bubble column reactor, Sci. Rep. 10 (1) (2020) 21502. [92] M. Pourtousi, J.N. Sahu, P. Ganesan, Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column, Chem. Eng. Process. Process Intensif. 75 (2014) 38-47. [93] T. Frank, J.M. Shi, E. Krepper, Non-drag forces in gas-liquid bubbly flows and validation of existing formulations model formulations, Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany, 2004. [94] R. Sungkorn, J.J. Derksen, J.G. Khinast, Modeling of turbulent gas-liquid bubbly flows using stochastic Lagrangian model and lattice-Boltzmann scheme, Chem. Eng. Sci. 66 (12) (2011) 2745-2757. [95] N.G. Deen, T. Solberg, B.H. Hjertager, Numerical simulation of the gas-liquid flow in a square cross-sectioned bubble column, In: Proceedings of 14th International Congress of Chemical and Process Engineering, Praha, Czech Republic, 2000. [96] D. Zhang, N.G. Deen, J.A.M. Kuipers, Numerical simulation of the dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces, Chem. Eng. Sci. 61 (23) (2006) 7593-7608. [97] E.I.V. van den Hengel, N.G. Deen, J.A.M. Kuipers, Application of coalescence and breakup models in a discrete bubble model for bubble columns, Ind. Eng. Chem. Res. 44 (14) (2005) 5233-5245. [98] D. Darmana, R.L.B. Henket, N.G. Deen, J.A.M. Kuipers, Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of CO2 into NaOH solution, numerical and experimental study, Chem. Eng. Sci. 62 (9) (2007) 2556-2575. |