中国化学工程学报 ›› 2024, Vol. 65 ›› Issue (1): 130-144.DOI: 10.1016/j.cjche.2023.06.026
• Full Length Article • 上一篇 下一篇
Donghui Li1, Wenzhe Wu1, Xue Ren1, Xixi Zhao1, Hongbing Song1, Meng Xiao1, Quanhong Zhu1, Hengjun Gai2, Tingting Huang1
收稿日期:
2023-02-19
修回日期:
2023-06-14
出版日期:
2024-01-28
发布日期:
2024-04-17
通讯作者:
Hengjun Gai,E-mail:hjgai@126.com;Tingting Huang,E-mail:huangtingting@qust.edu.cn
基金资助:
Donghui Li1, Wenzhe Wu1, Xue Ren1, Xixi Zhao1, Hongbing Song1, Meng Xiao1, Quanhong Zhu1, Hengjun Gai2, Tingting Huang1
Received:
2023-02-19
Revised:
2023-06-14
Online:
2024-01-28
Published:
2024-04-17
Contact:
Hengjun Gai,E-mail:hjgai@126.com;Tingting Huang,E-mail:huangtingting@qust.edu.cn
Supported by:
摘要: The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method. During the preparation of the Fe-NC catalyst, the complexation of N elements in urea could anchor Fe, and the formation of C3N4 during urea pyrolysis could also prevent migration and aggregation of Fe species, which jointly improve the dispersion and stability of Fe. The FeN4 sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation, while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process, which together promote catalytic degradation of m-cresol by PMS activation. Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO4-· and ·OH, and partially based on ·OH as the active components, and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed. This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.
Donghui Li, Wenzhe Wu, Xue Ren, Xixi Zhao, Hongbing Song, Meng Xiao, Quanhong Zhu, Hengjun Gai, Tingting Huang. Enhanced activation of peroxymonosulfate by Fe/N co-doped ordered mesoporous carbon with dual active sites for efficient removal of m-cresol[J]. 中国化学工程学报, 2024, 65(1): 130-144.
Donghui Li, Wenzhe Wu, Xue Ren, Xixi Zhao, Hongbing Song, Meng Xiao, Quanhong Zhu, Hengjun Gai, Tingting Huang. Enhanced activation of peroxymonosulfate by Fe/N co-doped ordered mesoporous carbon with dual active sites for efficient removal of m-cresol[J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 130-144.
[1] H.Q. Chu, X.Q. Liu, J.Y. Ma, T. Li, H.F. Fan, X.F. Zhou, Y.L. Zhang, E.C. Li, X.W. Zhang, Two-stage aNOxic-oxic (A/O) system for the treatment of coking wastewater:Full-scale performance and microbial community analysis, Chem. Eng. J. 417(2021)129204. [2] P.W. Han, C.H. Xu, Y.M. Wang, C.L. Sun, H.Z. Wei, H.B. Jin, Y. Zhao, L. Ma, The high catalytic activity and strong stability of 3% Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol:The role of surface functional groups and FeOx particles, Chin. J. Chem. Eng. 44(2022)105-114. [3] Z.S. Ncanana, V.S.R. Rajasekhar Pullabhotla, Oxidative degradation of m-cresol using ozone in the presence of pure γ-Al2O3, SiO2 and V2O5 catalysts, J. Environ. Chem. Eng. 7(3)(2019)103072. [4] J. Carbajo, A. Bahamonde, M. Faraldos, Photocatalyst performance in wastewater treatment applications:Towards the role of TiO2 properties, Mol. Catal. 434(2017)167-174. [5] W.X. Zhang, L.H. Ding, J.Q. Luo, M.Y. Jaffrin, B. Tang, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment:A critical review, Chem. Eng. J. 302(2016)446-458. [6] S.F. Tang, Z.T. Wang, D.L. Yuan, C. Zhang, Y.D. Rao, Z.B. Wang, K. Yin, Ferrous ion-tartaric acid chelation promoted calcium peroxide fenton-like reactions for simulated organic wastewater treatment, J. Clean. Prod. 268(2020)122253. [7] X.H. Li, S. Chen, I. Angelidaki, Y.F. Zhang, Bio-electro-Fenton processes for wastewater treatment:Advances and prospects, Chem. Eng. J. 354(2018)492-506. [8] N.K. Pandey, H.B. Li, L. Chudal, B. Bui, E. Amador, M.B. Zhang, H.M. Yu, M.L. Chen, X. Luo, W. Chen, Exploration of copper-cysteamine nanoparticles as an efficient heterogeneous Fenton-like catalyst for wastewater treatment, Mater. Today Phys. 22(2022)100587. [9] L.L. Qian, S.Z. Wang, D.H. Xu, Y. Guo, X.Y. Tang, L.S. Wang, Treatment of municipal sewage sludge in supercritical water:A review, Water Res. 89(2016)118-131. [10] X.D. Tan, H.Q. Li, X.R. Li, W.J. Sun, C.Y. Jin, L.L. Chen, H.Z. Wei, C.L. Sun, A novel isophorone wastewater treatment technology-wet electrocatalytic oxidation and its degradation mechanism study, J. Hazard. Mater. 389(2020)122035. [11] T. Hammedi, M. Triki, M.G. Alvarez, R.J. Chimentao, Z. Ksibi, A. Ghorbel, J. Llorca, F. Medina, Total degradation of p-hydroxybenzoic acid by Ru-catalysed wet air oxidation:A model for wastewater treatment, Environ.. Chem. Lett. 13(4)(2015)481-486. [12] W.L. Shi, Y.N. Liu, W. Sun, Y.Z. Hong, X.Y. Li, X. Lin, F. Guo, J.Y. Shi, Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4, Chin. J. Chem. Eng. 52(2022)136-145. [13] L. Yang, Y. Jiao, D.Y. Jia, Y.Z. Li, C.H. Liao, Role of oxygen vacancies and Sr sites in SrCo0.8Fe0.2O3 perovskite on efficient activation of peroxymonosulfate towards the degradation of aqueous organic pollutants, Chin. J. Chem. Eng. 40(2021)269-277. [14] J.H. Wei, F. Li, L.N. Zhou, D.D. Han, J.B. Gong, Strategies for enhancing peroxymonosulfate activation by heterogenous metal-based catalysis:A review, Chin. J. Chem. Eng. 50(2022)12-28. [15] C.X. Yu, Z.K. Xiong, H.Y. Zhou, P. Zhou, H. Zhang, R.F. Huang, G. Yao, B. Lai, Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification:Current developments, challenges and prospects, Chem. Eng. J. 433(2022)133802. [16] Y.J. Zhang, Q. Yang, J. Liang, Y.S. Luo, Q. Liu, Y.C. Yang, X.P. Sun, Fe-glycerate microspheres as a heterogeneous catalyst to activate peroxymonosulfate for efficient degradation of methylene blue, J. Phys. Chem. Solids 169(2022)110893. [17] J.L. Yu, P.E. Savage, Phenol oxidation over CuO/Al2O3 in supercritical water, Appl. Catal. B 28(3-4)(2000)275-288. [18] Y.H. Cao, B. Li, G.Y. Zhong, Y.H. Li, H.J. Wang, H. Yu, F. Peng, Catalytic wet air oxidation of phenol over carbon nanotubes:Synergistic effect of carboxyl groups and edge carbons, Carbon 133(2018)464-473. [19] X.H. Tan, J. Bai, J.Y. Zheng, Y. Zhang, J.H. Li, T.S. Zhou, L.G. Xia, Q.J. Xu, B.X. Zhou, Photocatalytic fuel cell based on sulfate radicals converted from sulfates in situ for wastewater treatment and chemical energy utilization, Catal. Today 335(2019)485-491. [20] Q.X. Zhao, Q.M. Mao, Y.Y. Zhou, J.H. Wei, X.C. Liu, J.Y. Yang, L. Luo, J.C. Zhang, H. Chen, H.B. Chen, L. Tang, Metal-free carbon materials-catalyzed sulfate radicalbased advanced oxidation processes:A review on heterogeneous catalysts and applications, Chemosphere 189(2017)224-238. [21] Q. Yang, Y.C. Yang, Y.J. Zhang, L.C. Zhang, S.J. Sun, K. Dong, Y.S. Luo, J.Y. Wu, X. W. Kang, Q. Liu, M.S. Hamdy, X.P. Sun, Highly efficient activation of peroxymonosulfate by biomass juncus derived carbon decorated with cobalt nanoparticles for the degradation of ofloxacin, Chemosphere 311(2023)137020. [22] Q. Yang, Y.J. Zhang, J. Liang, Y.S. Luo, Q. Liu, Y.C. Yang, X.P. Sun, Facile hydrothermal synthesis of co-glycerate as an efficient peroxymonosulfate activator for rhodamine B degradation, Colloids Surf. A 648(2022)129239. [23] L. Ling, D.P. Zhang, C. Fan, C. Shang, A Fe (II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe (II)/PMS ratio and neutral pH:The mechanisms, Water Res. 124(2017)446-453. [24] B. Sheng, F. Yang, Y.H. Wang, Z.H. Wang, Q. Li, Y.G. Guo, X.Y. Lou, J.S. Liu, Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe (II)/PMS, Chem. Eng. J. 375(2019)121989. [25] X.H. Long, Z.K. Xiong, R.F. Huang, Y.H. Yu, P. Zhou, H. Zhang, G. Yao, B. Lai, Sustainable Fe (III)/Fe (II) cycles triggered by co-catalyst of weak electrical current in Fe (III)/peroxymonosulfate system:Collaboration of radical and nonradical mechanisms, Appl. Catal. B 317(2022)121716. [26] J.J. Zhao, H.X. Wei, P.S. Liu, A.R. Zhou, X. Lin, J. Zhai, Activation of peroxymonosulfate by metal-organic frameworks derived Co1+xFe2-xO4 for organic dyes degradation:A new insight into the synergy effect of Co and Fe, J. Environ. Chem. Eng. 9(4)(2021)105412. [27] H.X. Li, Y.Z. Yao, J. Zhang, J. Du, S.D. Xu, C.H. Wang, D. Zhang, J.H. Tang, H.T. Zhao, J. Zhou, Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks:Kinetics, mechanisms, and degradation products, Chem. Eng. J. 397(2020)125401. [28] Y. Wang, L. Wu, Y.R. Zhou, Y.L. Zhang, S.P. Sun, W. Duo Wu, X.N. Wang, Z.X. Wu, Ternary FeS/c-Fe2O3@N/S-doped carbon nanohybrids dispersed in an ordered mesoporous silica for efficient peroxymonosulfate activation, Chem. Eng. J. 435(2022)135124. [29] L.M. Yang, W.D. Chen, C.H. Sheng, H.L. Wu, N.T. Mao, H. Zhang, Fe/N-codoped carbocatalysts loaded on carbon cloth (CC) for activating peroxymonosulfate (PMS) to degrade methyl orange dyes, Appl. Surf. Sci. 549(2021)149300. [30] U. Jeong, H. Kim, S. Ramesh, N.A. Dogan, S. Wongwilawan, S. Kang, J. Park, E.S. Cho, C.T. Yavuz, Rapid access to ordered mesoporous carbons for chemical hydrogen storage, Angew. Chem. Int. Ed. 60(41)(2021)22478-22486. [31] Z.C. Luo, Z.Y. Yin, J.Q. Yu, Y. Yan, B. Hu, R.F. Nie, A.F. Kolln, X. Wu, R.K. Behera, M.D. Chen, L. Zhou, F.D. Liu, B. Wang, W.Y. Huang, S. Zhang, L. Qi, General synthetic strategy to ordered mesoporous carbon catalysts with single-atom metal sites for electrochemical CO2 reduction, Small 18(16)(2022)2270078. [32] D.D. He, K. Zhu, J. Huang, Y.Q. Shen, L.L. Lei, H.M. He, W.J. Chen, N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline:Synergistic effect and mechanism, J. Hazard. Mater. 424(2022)127569. [33] G.L. Wang, S. Chen, X. Quan, H.T. Yu, Y.B. Zhang, Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants, Carbon 115(2017)730-739. [34] Y.B. Wang, M. Liu, X. Zhao, D. Cao, T. Guo, B. Yang, Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon, Carbon 135(2018)238-247. [35] Y. Gao, T.W. Wu, C.D. Yang, C. Ma, Z.Y. Zhao, Z.H. Wu, S.J. Cao, W. Geng, Y. Wang, Y.Y. Yao, Y.N. Zhang, C. Cheng, Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts, Angew. Chem. Int. Ed. 60(41)(2021)22513-22521. [36] H.J. Zhang, H.H. Tao, Y. Jiang, Z. Jiao, M.H. Wu, B. Zhao, Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries, J. Power Sources 195(9)(2010)2950-2955. [37] V.K. Gupta, A. Nayak, Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chem. Eng. J. 180(2012)81-90. [38] Y.J. Zhang, Q. Yang, L.C. Yue, Q. Liu, Y.S. Luo, J.Y. Wu, X.W. Kang, S.J. Sun, Y.C. Yang, X.P. Sun, Biomass juncus derived carbon modified with Fe3O4 nanoparticles toward activating peroxymonosulfate for efficient degradation of tetracycline, J. Water Process. Eng. 51(2023)103324. [39] S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc. 122(43)(2000)10712-10713. [40] A. Carrero, J. Calles, L. García-Moreno, A. Vizcaíno, Production of renewable hydrogen from glycerol steam reforming over bimetallic Ni-(Cu, Co, Cr) catalysts supported on SBA-15 silica, Catalysts 7(12)(2017)55. [41] P. Arab, A. Badiei, A. Koolivand, G. Mohammadi Ziarani, Direct hydroxylation of benzene to phenol over Fe3O4 supported on nanoporous carbon, Chin. J. Catal. 32(1-2)(2011)258-263. [42] H. Huwe, M. Fröba, Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3, Carbon 45(2)(2007)304-314. [43] C.S. Feng, C. Chen, Y. Zhu, Q. Cao, C. Chen, C.Y. Jiang, Y.P. Wang, Degradation of ofloxacin using peroxymonosulfate activated by nitrogen-rich graphitized carbon microspheres:Structure and performance controllable study, J. Environ. Sci. 99(2021)10-20. [44] M.Z. Li, C.L. Yan, R. Ramachandran, Y.C. Lan, H. Dai, H.Q. Shan, X.C. Meng, D.H. Cui, F. Wang, Z.X. Xu, Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO, Chem. Eng. J. 430(2022)133050. [45] D.P. Xue, H.C. Xia, W.F. Yan, J.N. Zhang, S.C. Mu, Defect engineering on carbonbased catalysts for electrocatalytic CO2 reduction, Nano Micro Lett. 13(1)(2020)1-23. [46] K. Dong, J. Liang, Y.Y. Wang, Z.Q. Xu, Q. Liu, Y.L. Luo, T.S. Li, L. Li, X.F. Shi, A.M. Asiri, Q. Li, D.W. Ma, X.P. Sun, Honeycomb carbon nanofibers:A superhydrophilic O2-Entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction, Angew. Chem. Int. Ed. 60(19)(2021)10583-10587. [47] S.L. Huo, X. Song, Y.B. Zhao, W. Ni, H. Wang, K.X. Li, Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water, J. Mater. Chem. A 8(38)(2020)19927-19937. [48] Y. Wang, L.P. Huang, Y.Q. Liu, D.C. Wei, H.L. Zhang, H. Kajiura, Y.M. Li, Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity, Nano Res. 2(11)(2009)865-871. [49] Z.Y. Lin, G. Waller, Y. Liu, M.L. Liu, C.P. Wong, Facile synthesis of nitrogendoped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction, Adv. Energy Mater. 2(7)(2012)884-888. [50] J.W. Lang, X.B. Yan, W.W. Liu, R.T. Wang, Q.J. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes, J. Power Sources 204(2012)220-229. [51] H. Zhang, H.N. Guo, A.Y. Li, X.Y. Chang, S. Liu, D. Liu, Y.J. Wang, F. Zhang, H.T. Yuan, High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries, J. Energy Chem. 31(2019)159-166. [52] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254(8)(2008)2441-2449. [53] T. Zhang, J.D. Wu, Z. Wang, Z. Wei, J.H. Liu, X.Z. Gong, Transfer of molecular oxygen and electrons improved by the regulation of C-N/C=O for highly efficient 2e-ORR, Chem. Eng. J. 433(2022)133591. [54] M.L. Sun, J.L. Peng, P. Zhou, C.S. He, Y. Du, Z.C. Pan, S.J. Su, F. Dong, Y. Liu, B. Lai, Insights into peroxymonosulfate activation under visible light:Sc2O3@C3N4 mediated photoexcited electron transfer, Chem. Eng. J. 435(2022)134836. [55] C.H. Liu, Y. Wu, K.A. Sun, J.J. Fang, A.J. Huang, Y. Pan, W.C. Cheong, Z.W. Zhuang, Z.B. Zhuang, Q.H. Yuan, H.L. Xin, C. Zhang, J.W. Zhang, H. Xiao, C. Chen, Y.D. Li, Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window, Chem 7(5)(2021)1297-1307. [56] C.Y. Duan, M.L. Ding, Y. Feng, M.J. Cao, J.F. Yao, ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition, Sep. Purif. Technol. 285(2022)120359. [57] L.J. Peng, Y.N. Shang, B.Y. Gao, X. Xu, Co3O4 anchored in N, S heteroatom codoped porous carbons for degradation of organic contaminant:Role of pyridinic N-Co binding and high tolerance of chloride, Appl. Catal. B 282(2021)119484. [58] S.Z. Wang, J.L. Wang, Peroxymonosulfate activation by Co9S8@S and N co-doped biochar for sulfamethoxazole degradation, Chem. Eng. J. 385(2020)123933. [59] X.G. Duan, H.Q. Sun, S.B. Wang, Metal-free carbocatalysis in advanced oxidation reactions, Acc. Chem. Res. 51(3)(2018)678-687. [60] Y.W. Gao, T. Li, Y. Zhu, Z.H. Chen, J.Y. Liang, Q.Y. Zeng, L. Lyu, C. Hu, Highly nitrogen-doped porous carbon transformed from graphitic carbon nitride for efficient metal-free catalysis, J. Hazard. Mater. 393(2020)121280. [61] Z.Y. Zhu, H.F. Tang, Y. Du, Y.F. Wei, Y.Q. Chen, W.J. Yang, D.Y. Zhang, Z.R. Li, C.B. Liu, Filter-membrane treatment of continuous-flow tetracycline through photocatalysis-assisted peroxydisulfate oxidation, AlChE. J. 68(6)(2022) -17654. [62] Z. Boutamine, O. Hamdaoui, S. Merouani, Probing the radical chemistry and the reaction zone during the sono-degradation of endocrine disruptor 2-pheNOxyethanol in water, Ultrason. Sonochem. 41(2018)521-526. [63] S.S. Liu, X. Zhao, Y.B. Wang, H.X. Shao, M. Qiao, Y. Wang, S. Zhao, Peroxymonosulfate enhanced photoelectrocatalytic degradation of phenol activated by Co3O4 loaded carbon fiber cathode, J. Catal. 355(2017)167-175. [64] S.Q. Liu, Z.C. Zhang, F. Huang, Y.Z. Liu, L. Feng, J. Jiang, L.Q. Zhang, F. Qi, C. Liu, Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation:Role of PMS adsorption and singlet oxygen generation, Appl. Catal. B 286(2021)119921. [65] Y. Feng, C.Z. Liao, L.J. Kong, D.L. Wu, Y.M. Liu, P.H. Lee, K. Shih, Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation:A novel nonradical oxidation process, J. Hazard. Mater. 354(2018)63-71. [66] C.X. Li, C.B. Chen, Y.J. Wang, X.Z. Fu, S. Cui, J.Y. Lu, J. Li, H.Q. Liu, W.W. Li, T.C. Lau, Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation, Chem. Eng. J. 362(2019)570-575. [67] Y. Lei, C.S. Chen, J. Ai, H. Lin, Y.H. Huang, H. Zhang, Selective decolorization of cationic dyes by peroxymonosulfate:Non-radical mechanism and effect of chloride, RSC Adv. 6(2)(2016)866-871. [68] X. He, K.E. O'Shea, Selective oxidation of H1-antihistamines by unactivated peroxymonosulfate (PMS):Influence of inorganic anions and organic compounds, Water Res. 186(2020)116401. [69] Y. Liu, H.G. Guo, Y.L. Zhang, X. Cheng, P. Zhou, J. Deng, J.Q. Wang, W. Li, Highly efficient removal of trimethoprim based on peroxymonosulfate activation by carbonized resin with Co doping:Performance, mechanism and degradation pathway, Chem. Eng. J. 356(2019)717-726. [70] Y.K. Liu, T. Qiu, Y.L. Wu, S.Y. Wang, M. Liu, W.B. Dong, Remediation of soil contaminated with ibuprofen by persulfate activated with Gallic acid and ferric iron, Chem. Eng. J. 426(2021)127653. [71] M.S. Alam, B.S.M. Rao, E. Janata, OH reactions with aliphatic alcohols:Evaluation of kinetics by direct optical absorption measurement. A pulse radiolysis study, Radiat. Phys. Chem. 67(6)(2003)723-728. [72] P. Liang, C. Zhang, X.G. Duan, H.Q. Sun, S.M. Liu, M.O. Tade, S.B. Wang, N-doped graphene from metal-organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid:N-functionality and mechanism, ACS Sustainable Chem. Eng. 5(3)(2017)2693-2701. [73] E.M. Rodríguez, G. Márquez, M. Tena, P.M. Álvarez, F.J. Beltrán, Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers:the case of ofloxacin, Appl. Catal. B 178(2015)44-53. [74] P. Sun, H. Liu, M.B. Feng, L. Guo, Z.C. Zhai, Y.S. Fang, X.S. Zhang, V.K. Sharma, Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator:Singlet oxygen-dominated catalytic degradation of organic contaminants, Appl. Catal. B 251(2019)335-345. [75] Z.Y. Guan, S.Y. Zuo, F. Yang, B.Y. Zhang, H.M. Xu, D.S. Xia, M.Z. Huang, D.Y. Li, The polarized electric field on Fe-N-C-S promotes non-radical process of peroxymonosulfate degrade diclofenac sodium, Colloids Surf.. A 621(2021)126608. [76] C.Y. Guo, C.F. Chen, J.Y. Lu, D. Fu, C.Z. Yuan, X.L. Wu, K.N. Hui, J.R. Chen, Stable and recyclable Fe3C@CN catalyst supported on carbon felt for efficient activation of peroxymonosulfate, J. Colloid Interface Sci. 599(2021)219-226. [77] W.X. Qin, G.D. Fang, Y.J. Wang, D.M. Zhou, Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles:Key role of superoxide radicals, Chem. Eng. J. 348(2018)526-534. [78] P.P. Fu, Q.S. Xia, H.M. Hwang, P.C. Ray, H.T. Yu, Mechanisms of nanotoxicity:Generation of reactive oxygen species, J. Food Drug Anal. 22(1)(2014)64-75. [79] S.A. Liu, D. Liu, Y.L. Sun, P.Y. Xiao, H.J. Lin, J.R. Chen, X.L. Wu, X.G. Duan, S.B. Wang, Enzyme-mimicking single-atom FeN4 sites for enhanced photo-Fentonlike reactions, Appl. Catal. B 310(2022)121327. [80] T. Yang, S.S. Fan, Y. Li, Q. Zhou, Fe-N/C single-atom catalysts with high density of Fe-Nx sites toward peroxymonosulfate activation for high-efficient oxidation of bisphenol A:Electron-transfer mechanism, Chem. Eng. J. 419(2021)129590. |
[1] | Xiaojing Liu, Ruohan Zhao, Hao Zhao, Zhimiao Wang, Fang Li, Wei Xue, Yanji Wang. Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol[J]. 中国化学工程学报, 2024, 65(1): 19-28. |
[2] | Jinzhi Cui, Guiqiao Wang, Xing Rong, Wensu Gao, Yaxin Lu, Yawen Luo, Lichao Zhang, Zhongfa Cheng, Canzhu Gao. Removal of kathon by UV-C activated hydrogen peroxide: Kinetics, mechanisms, and enhanced biodegradability assessment[J]. 中国化学工程学报, 2024, 65(1): 178-187. |
[3] | Li Qiu, Chao Li, Shu Zhang, Shuang Wang, Bin Li, Zhenhua Cui, Yonggui Tang, Obid Tursunov, Xun Hu. Importance of oxygen-containing functionalities and pore structures of biochar in catalyzing pyrolysis of homologous poplar[J]. 中国化学工程学报, 2024, 65(1): 200-211. |
[4] | Xin Liu, Lei Yang, Tao Wei, Shanping Liu, Beibei Xiao. Active MoS2-based electrode for green ammonia synthesis[J]. 中国化学工程学报, 2024, 65(1): 268-275. |
[5] | Fangren Qian, Lishan Peng, Yujuan Zhuang, Lei Liu, Qingjun Chen. Direct atomic-level insight into oxygen reduction reaction on size-dependent Pt-based electrocatalysts from density functional theory calculations[J]. 中国化学工程学报, 2023, 61(9): 140-146. |
[6] | Ali Nikkhah, Hasan Nikkhah, Hadis langari, Alireza Nouri, Abdul Wahab Mohammad, Ang Wei Lun, Ng law Yong, Rosiah Rohani, Ebrahim Mahmoudi. MXene: From synthesis to environment remediation[J]. 中国化学工程学报, 2023, 61(9): 260-280. |
[7] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method[J]. 中国化学工程学报, 2023, 60(8): 53-60. |
[8] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity[J]. 中国化学工程学报, 2023, 60(8): 118-130. |
[9] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction[J]. 中国化学工程学报, 2023, 60(8): 165-172. |
[10] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[11] | Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun. Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances[J]. 中国化学工程学报, 2023, 60(8): 194-204. |
[12] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion[J]. 中国化学工程学报, 2023, 59(7): 1-8. |
[13] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[14] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[15] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media[J]. 中国化学工程学报, 2023, 57(5): 50-62. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||