[1] L.S. Fan, Summary paper on fluidization and transport phenomena, Powder Technol. 88(3)(1996)245-253. [2] F.J. Van Antwerpen, The origins of chemical engineering, in:W.F. Furter (Ed.), History of Chemical Engineering Washington (1980). [3] B. Suleimenova, B. Aimbetov, D. Shah, E.J. Anthony, Y. Sarbassov, Attrition of high ash Ekibastuz coal in a bench scale fluidized bed rig under O2/N2 and O2/CO2 environments, Fuel Process. Technol. 216(2021)106775. [4] Z.M. Yuan, Z. Huang, S.X. Ma, G.J. Zhao, H.R. Yang, G.X. Yue, Experimental investigation on the effect of superficial gas velocity on bubble dynamics properties of B particles in gasesolid fluidized bed reactor using digital image analysis technique, Fuel 348(2023)128617. [5] S. Manzoor, J. Tatum, O.B. Wani, E.R. Bobicki, Comminution of carbon particles in a fluidized bed reactor:A review, Miner. Eng. 195(2023)108026. [6] M. Seemann, Methanation of Biosyngas in a Fluidized Bed ReactoreDevelopment of a One-step Synthesis Process, Featuring Simultaneous Methanation, Watergas Shift and Low Temperature Tar Reforming, PhD Thesis, ETH Zurich, 2006. [7] J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz, Production of synthetic natural gas (SNG) from coal and dry biomassdA technology review from 1950 to 2009, Fuel 89(8)(2010)1763-1783. [8] J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz, Employing catalyst fluidization to enable carbon management in the synthetic natural gas production from biomass, Chem. Eng. Technol. 32(3)(2009)343-347. [9] T.L. Zhang, W.J. Bai, Q.P. Dong, D.M. Chu, Y.R. Yu, C. Yan, Y. Li, Y. He, Hydrodynamic analysis of carbon nanotube in pilot-scale distributor-less tapered fluidized bed, Powder Technol. 409(2022)117846. [10] A. Baydin, F. Tay, J.C. Fan, M. Manjappa, W.L. Gao, J. Kono, Carbon nanotube devices for quantum technology, Materials 15(4)(2022)1535. [11] K. Godlewska, M. Paszkiewicz, Reusable passive sampler with carbon nanotubes for monitoring contaminants in wastewater:Application, regeneration and reuse, Chemosphere 332(2023)138855. [12] Y. Wang, W.Z. Yao, H.B. Huang, J. Huang, L. Li, X.H. Yu, Polypyrrole-derived carbon nanotubes for potential application in electrochemical detection of dopamine, Solid State Sci. 134(2022)107038. [13] I.A. Khan, A. Rai, J.P. Keshari, M. Nizamuddin, S. Nayak, D. Sharma, Design, simulation and comparative analysis of carbon nanotube based energy efficient priority encoders for nanoelectronic applications, E Prime Adv. Electr. Eng. Electron. Energy 4(2023)100138. [14] Z.W. Chen, J.G. Zhao, J.F. Cao, Y.Y. Zhao, J.Q. Huang, Z.S. Zheng, W.J. Li, S. Jiang, J. Qiao, B.Y. Xing, J. Zhang, Opportunities for graphene, single-walled and multi-walled carbon nanotube applications in agriculture:A review, Crop Des 1(1)(2022)100006. [15] B. Tynan, Y. Zhou, S.A. Brown, L.M. Dai, A.N. Rider, C.H. Wang, Structural supercapacitor electrodes for energy storage by electroless deposition of MnO2 on carbon nanotube mats, Compos. Sci. Technol. 238(2023)110016. [16] F.Wei, Q. Zhang,W.Z. Qian, H. Yu, Y.Wang, G.H. Luo, G.H. Xu, D.Z. Wang, The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor:A multiscale spaceetime analysis, Powder Technol. 183(1)(2008)10-20. [17] W.J. Bai, D.M. Chu, Y. He, Fluidization dynamic characteristics of carbon nanotube particles in a tapered fluidized bed, Chin. J. Chem. Eng. 44(2022)321-331. [18] W.J. Bai, D.M. Chu, F. Wang, Y. He, Research on fluidization performance of different tapered fluidized bed reactors for fluidizing carbon nanotubes, Ind. Eng. Chem. Res. 59(25)(2020)11893-11904. [19] J.W. Chew, W.C.Q. LaMarche, R.A. Cocco, 100 years of scaling up fluidized bed and circulating fluidized bed reactors, Powder Technol. 409(2022)117813. [20] K. Dasgupta, J.B. Joshi, H. Singh, S. Banerjee, Fluidized bed synthesis of carbon nanotubes:Reaction mechanism, rate controlling step and overall rate of reaction, AIChE J. 60(8)(2014)2882-2892. [21] S. Fang, Y.D. Wei, L. Fu, G. Tian, H.B. Qu, Time-series analysis of the characteristic pressure fluctuations in a conical fluidized bed with negative pressure, Chin. J. Chem. Eng. 32(2021)87-99. [22] C. Sheng, C.L. Duan, Y.M. Zhao, L. Dong, Z.F. Luo, Analysis and evaluation on pressure fluctuations in air dense medium fluidized bed, Int. J. Min. Sci. Technol. 28(3)(2018)461-467. [23] J.R. van Ommen, R.J. de Korte, C.M. van den Bleek, Rapid detection of defluidization using the standard deviation of pressure fluctuations, Chem. Eng. Process 43(10)(2004)1329-1335. [24] C. Sobrino, S. Sanchez-Delgado, N. García-Hernando, M. de Vega, Standard deviation of absolute and differential pressure fluctuations in fluidized beds of group B particles, Chem. Eng. Res. Des. 86(11)(2008)1236-1242. [25] S.M. Okhovat-Alavian, J. Behin, N. Mostoufi, Investigating the flow structures in semi-cylindrical bubbling fluidized bed using pressure fluctuation signals, Adv. Powder Technol. 30(6)(2019)1247-1256. [26] Z.Z. Ma, H.F. Ma, W.X. Qian, H.T. Zhang, Q.W. Sun, W.Y. Ying, Bubble behaviors in a dense gasesolids fluidized bed:Analysis of pressure fluctuation, Chem. Eng. Technol. 45(9)(2022)1675-1682. [27] F. Johnsson, R.C. Zijerveld, J.C. Schouten, C.M. van den Bleek, B. Leckner, Characterization of fluidization regimes by time-series analysis of pressure fluctuations, Int. J. Multiphas. Flow 26(4)(2000)663-715. [28] Y.D. Zhang, Y.M. Zhao, L. Dong, C.L. Duan, E.H. Zhou, J.Y. Lu, B. Zhang, X.L. Yang, Flow pattern transition characteristics in vibrated gasesolid fluidized bed of Geldart B magnetite powder using pressure drop signals analysis, Powder Technol. 327(2018)358-367. [29] Y.D. Zhang, X.Y. Zhang,Y.M.Zhao, G.N. Lv, X.L.Yang, Z.M.Wang, C.L.Duan, L.Dong, Bubble growth obtained from pressure fluctuation in vibration separation fluidized bed using wavelet analysis,Adv. Powder Technol. 31(8)(2020)3287-3296. [30] M. Bassenne, P. Moin, J. Urzay, Wavelet multiresolution analysis of particleladen turbulence, Phys. Rev. Fluids 3(8)(2018)084304. [31] B. Li, X.F. Chen, Wavelet-based numerical analysis:A review and classification, Finite Elem. Anal. Des. 81(2014)14-31. [32] G.P. Wu, Y. He, L.A. Luo, W. Chen, Dynamic characterizations of gasesolid flow in a novel multistage fluidized bed via nonlinear analyses, Chem. Eng. J. 359(2019)1013-1023. [33] S.G. Mallat, A theory for multiresolution signal decomposition:The wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11(7)(1989)674-693. [34] W.J. Bai, D.M. Chu, Y. He, The minimum fluidization velocity and dynamic characteristics of agglomerated carbon nanotube in a tapered fluidized bed at elevated temperature, Chem. Eng. Res. Des. 168(2021)239-253. [35] G.P. Wu, Y. He, L.A. Luo, W. Chen, Dynamic characterizations of gasesolid flow in a novel multistage fluidized bed via nonlinear analyses, Chem. Eng. J. 359(2019)1013-1023. [36] H.J. Sun, C.B. Hu, Y.H. Xu, Pressure fluctuations analysis on the powder fluidization performance at different pressure, Int. J. Multiphas. Flow 116(2019)176-184. [37] C. Sheng, C.L. Duan, Y.M. Zhao, L.A. Dong, Z.F. Luo, Analysis and evaluation on pressure fluctuations in air dense medium fluidized bed, Int. J. Min. Sci. Technol. 28(3)(2018)461-467. |