[1] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452 (7185) (2008) 301–310.https://pubmed.ncbi.nlm.nih.gov/18354474 [2] H.G. Han, X.L. Wu, L.M. Ge, J.F. Qiao, A sludge volume index (SVI) model based on the multivariate local quadratic polynomial regression method, Chin. J. Chem. Eng. 26 (5) (2018) 1071–1077. 10.1016/j.cjche.2017.08.007 [3] W. Wei, P.F. Xia, Z.W. Liu, M. Zuo, A modified active disturbance rejection control for a wastewater treatment process, Chin. J. Chem. Eng. 28 (10) (2020) 2607–2619. 10.1016/j.cjche.2020.06.032 [4] H.G. Han, S.G. Zhu, J.F. Qiao, M. Guo, Data-driven intelligent monitoring system for key variables in wastewater treatment process, Chin. J. Chem. Eng. 26 (10) (2018) 2093–2101. 10.1016/j.cjche.2018.03.027 [5] I. Lizarralde, T. Fernández-Arévalo, A. Manas, E. Ayesa, P. Grau, Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid, Water Res. 153 (2019) 39–52. 10.1016/j.watres.2018.12.056 [6] H.G. Han, Z. Liu, Y. Hou, J.F. Qiao, Data-driven multiobjective predictive control for wastewater treatment process, IEEE Trans. Ind. Inform. 16 (4) (2020) 2767–2775. 10.1109/TII.2019.2940663 [7] W.D. Tian, Z.J. Liu, L.N. Li, S.F. Zhang, C.K. Li, Identification of abnormal conditions in high-dimensional chemical process based on feature selection and deep learning, Chin. J. Chem. Eng. 28 (7) (2020) 1875–1883. 10.1016/j.cjche.2020.05.003 [8] P. Baraldi, F.D. Maio, D. Genini, E. Zio, Reconstruction of missing data in multidimensional time series by fuzzy similarity, Appl. Soft Comput. 26 (2015) 1–9. 10.1016/j.asoc.2014.09.038 [9] L. Rieger, I. Takács, K. Villez, H. Siegrist, P. Lessard, P.A. Vanrolleghem, Y. Comeau, Data reconciliation for wastewater treatment plant simulation studies-planning for high-quality data and typical sources of errors, Water Environ. Res. 82 (5) (2010) 426–433. 10.2175/106143009x12529484815511 [10] G. Olsson, H. Aspegren, M.K. Nielsen, Operation and control of wastewater treatment—A Scandinavian perspective over 20 years, Water Sci. Technol. 37 (12) (1998) 1–13. 10.1016/S0273-1223(98)00364-3 [11] H.R. Haimi, M. Mulas, F. Corona, R. Vahala, Data-derived soft-sensors for biological wastewater treatment plants: An overview, Environ. Model. Softw. 47 (2013) 88–107. 10.1016/j.envsoft.2013.05.009 [12] N.M. Noor, M.M. Al Bakri Abdullah, A.S. Yahaya, N.A. Ramli, Comparison of linear interpolation method and mean method to replace the missing values in environmental data set, Mater. Sci. Forum 803 (2014) 278–281. 10.4028/www.scientific.net/msf.803.278 [13] G. Hawthorne, P. Elliott, Imputing cross-sectional missing data: Comparison of common techniques, Aust. N. Z. J. Psychiatry 39 (7) (2005) 583–590.https://pubmed.ncbi.nlm.nih.gov/15996139/ [14] Z.W. Wang, L. Wang, Y.Y. Tan, J.F. Yuan, Fault detection based on Bayesian network and missing data imputation for building energy systems, Appl. Therm. Eng. 182 (2021) 116051. 10.1016/j.applthermaleng.2020.116051 [15] Y. Deng, C. Chang, M.S. Ido, Q. Long, Multiple imputation for general missing data patterns in the presence of high-dimensional data“>, Sci. Reports”> 6“> (2016) 21689.https://www.nature.com/articles/srep21689%22%3e [16] R. Rustum, A.J. Adeloye, Replacing outliers and missing values from activated sludge data using kohonen self-organizing map, J. Environ. Eng. 133 (9) (2007) 909–916. 10.1061/(asce)0733-9372(2007)133:9(909) [17] H. Tabari, P. Hosseinzadeh Talaee, Reconstruction of river water quality missing data using artificial neural networks, Water Qual. Res. J. 50 (4) (2015) 326–335. ://doi.org/10.2166/wqrjc.2015.044 [18] da Xu, J.Q. Sheng, P.J.H. Hu, T.S. Huang, C.C. Hsu, A deep learning–based unsupervised method to impute missing values in patient records for improved management of cardiovascular patients, IEEE J. Biomed. Heal. Inform. 25 (6) (2021) 2260–2272. 10.1109/JBHI.2020.3033323 [19] Q. Shang, Z.S. Yang, S. Gao, D.R. Tan, An imputation method for missing traffic data based on FCM optimized by PSO-SVR, J. Adv. Transp. 2018 (2018) 2935248. 10.1155/2018/2935248 [20] D. Li, Y.X. Zhou, G.Q. Hu, C.J. Spanos, Handling incomplete sensor measurements in fault detection and diagnosis for building HVAC systems, IEEE Trans. Autom. Sci. Eng. 17 (2) (2020) 833–846. 10.1109/TASE.2019.2948101 [21] A.M. Sefidian, N. Daneshpour, Missing value imputation using a novel grey based fuzzy c-means, mutual information based feature selection, and regression model, Expert Syst. Appl. 115 (2019) 68–94. 10.1016/j.eswa.2018.07.057 [22] N. Shaadan, N.A.M. Rahim, Imputation analysis for time series air quality ({PM}10) data set: A comparison of several methods, J. Phys. Conf. Ser. 1366 (1) (2019) 012107. 10.1088/1742-6596/1366/1/012107 [23] A. Chaudhry, W. Li, A. Basri, F. Patenaude, A method for improving imputation and prediction accuracy of highly seasonal univariate data with large periods of missingness, Wirel. Commun. Mob. Comput. 2019 (2019) 4039758. 10.1155/2019/4039758 [24] S.J. Hadeed, M.K. O'Rourke, J.L. Burgess, R.B. Harris, R.A. Canales, Imputation methods for addressing missing data in short-term monitoring of air pollutants, Sci. Total. Environ. 730 (2020) 139140. 10.1016/j.scitotenv.2020.139140 [25] S. Moritz, A. Sard?a, T. Bartz-Beielstein, M. Zaefferer, J. Stork, Comparison of different methods for univariate time series imputation in R, ArXiv 15 (2015) 3924-3944. [26] P.D. Allison. Missing data: Quantitative applications in the social sciences, Br. J. Math. Stat. Psychol. 55(1) (2002) 193–196. [27] V. Audigier, F. Husson, J. Josse, Multiple imputation for continuous variables using a Bayesian principal component analysis, J. Stat. Comput. Simul. 86 (11) (2016) 2140–2156. 10.1080/00949655.2015.1104683 [28] W.O. Yodah, J.M. Kihoro, K.H.O. Arhiany, H.W. Kibunja, Imputation of incomplete non-stationary seasonal time series data, Math. Theory Model. 3(12) (2013) 142-154. [29] F. Bashir, H.L. Wei, Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm, Neurocomputing 276 (2018) 23–30. 10.1016/j.neucom.2017.03.097 [30] L. Bigaignon, R. Fieuzal, C. Delon, T. Tallec, Combination of two methodologies, artificial neural network and linear interpolation, to gap-fill daily nitrous oxide flux measurements, Agric. For. Meteorol. 291 (2020) 108037. 10.1016/j.agrformet.2020.108037 [31] L. Greco, M. Cuomo, B-Spline interpolation of Kirchhoff-Love space rods, Comput. Methods Appl. Mech. Eng. 256 (2013) 251–269. 10.1016/j.cma.2012.11.017 [32] N. Bokde, F.M. Álvarez, M.W. Beck, K. Kulat, A novel imputation methodology for time series based on pattern sequence forecasting, Pattern Recognit. Lett. 116 (2018) 88–96.https://pubmed.ncbi.nlm.nih.gov/30416234/ [33] S. Chandrasekaran, S. Moritz, M. Zaefferer, J. Stork, T. Bartz-Beilelstein, Data preprocessing: A new algorithm for univariate imputation designed specifically for industrial needs, in: Proceedings of the Workshop Computational Intelligence, Dortmund, Germany, 2016, 1–12. [34] T.T.H. Phan, É. Poisson Caillault, A. Lefebvre, A. Bigand, Dynamic time warping-based imputation for univariate time series data, Pattern Recognit. Lett. 139 (2020) 139–147. 10.1016/j.patrec.2017.08.019 [35] S. Chiewchanwattana, C. Lursinsap, C.H. Henry Chu, Imputing incomplete time-series data based on varied-window similarity measure of data sequences, Pattern Recognit. Lett. 28 (9) (2007) 1091–1103. 10.1016/j.patrec.2007.01.008 [36] Y.H. Liu, T. Dillon, W.J. Yu, W. Rahayu, F. Mostafa, Missing value imputation for industrial IoT sensor data with large gaps, IEEE Internet Things J. 7 (8) (2020) 6855–6867. 10.1109/JIOT.2020.2970467 [37] R.B. Cleveland, W.S. Cleveland, STL: A seasonal-trend decomposition procedure based on Loess (with discussion), J. Off. Stat. 6(1) (1990) 3–33. [38] H.T. He, S.C. Gao, T. Jin, S. Sato, X.Y. Zhang, A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction, Appl. Soft Comput. 108 (2021) 107488. 10.1016/j.asoc.2021.107488 [39] F.F. Li, Z.Y. Wang, X. Zhao, E. Xie, J. Qiu, Decomposition-ANN methods for long-term discharge prediction based on fisher's ordered clustering with MESA, Water Resour. Manag. 33 (9) (2019) 3095–3110. ://dx.doi.org/10.1007/s11269-019-02295-8 [40] T.H. Sun, T.Y. Zhang, Y. Teng, Z. Chen, J.K. Fang, Monthly electricity consumption forecasting method based on X12 and STL decomposition model in an integrated energy system, Math. Probl. Eng. 2019 (2019) 9012543. 10.1155/2019/9012543 [41] S. Polwiang, The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017), BMC Infect. Dis. 20 (1) (2020) 208.https://pubmed.ncbi.nlm.nih.gov/32164548/ [42] M. Theodosiou, Forecasting monthly and quarterly time series using STL decomposition, Int. J. Forecast. 27 (4) (2011) 1178–1195. 10.1016/j.ijforecast.2010.11.002 [43] L. Qin, W.D. Li, S.J. Li, Effective passenger flow forecasting using STL and ESN based on two improvement strategies, Neurocomputing 356 (2019) 244–256. 10.1016/j.neucom.2019.04.061 [44] K.B. Newhart, R.W. Holloway, A.S. Hering, T.Y. Cath, Data-driven performance analyses of wastewater treatment plants: A review, Water Res. 157 (2019) 498–513.https://pubmed.ncbi.nlm.nih.gov/30981980/ [45] A.D. Kotzapetros, P.A. Paraskevas, A.S. Stasinakis, Design of a modern automatic control system for the activated sludge process in wastewater treatment, Chin. J. Chem. Eng. 23 (8) (2015) 1340–1349. 10.1016/j.cjche.2014.09.053 [46] H.G. Han, H.J. Zhang, Z. Liu, J.F. Qiao, Data-driven decision-making for wastewater treatment process, Control Eng. Pract. 96 (2020) 104305. 10.1016/j.conengprac.2020.104305 [47] D.B. Rubin, Inference and missing data, Biometrika 63 (3) (1976) 581–592. 10.1093/biomet/63.3.581 [48] P. Wang, C.H. Yang, X.M. Tian, D.X. Huang, Adaptive nonlinear model predictive control using an on-line support vector regression updating strategy, Chin. J. Chem. Eng. 22 (7) (2014) 774–781. 10.1016/j.cjche.2014.05.004 [49] S. Moritz, T. Bartz-Beielstein, imputeTS: Time series missing value imputation in R, R J. 9 (1) (2017) 207. 10.32614/rj-2017-009 [50] N. Alavi, J.S. Warland, A.A. Berg, Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach, Agric. For. Meteorol. 141 (1) (2006) 57–66. |