[1] K. Budak, O. Sogut, U. Aydemir Sezer, A review on synthesis and biomedical applications of polyglycolic acid, J. Polym. Res. 27 (8) (2020) 208. [2] Z.Y. Zhang, Q. Peng, X.F. Shi, H. Niu, P. Guo, Z.W. Li, M.F. Lyu, M. Lei, A theoretical and experimental study on the degradation mechanism of polyglycolic acid under acidic, neutral, and basic conditions, J. Appl. Polym. Sci. 141 (37) (2024) e55947. [3] Y. Reyhanoglu, B. Kalayci, E. Gokturk, One-step solvent-free synthesis of polyglycolic acid from sustainable C1 feedstocks, Macromol. Chem. Phys. 222 (2) (2021) 2000284. [4] N.M. El-Sayed, M.A. El-Bakary, M.A. Ibrahim, M.A. Elgamal, A.A. Hamza, Characterization of the mechanical and structural properties of PGA/TMC copolymer for cardiac tissue engineering, Microsc. Res. Tech. 84 (7) (2021) 1596-1606. [5] Y.Y. Lu, C. Schmidt, S. Beuermann, Fast synthesis of high-molecular-weight polyglycolide using diphenyl bismuth bromide as catalyst, Macromol. Chem. Phys. 216 (4) (2015) 395-399. [6] Z. Pan, J.D. Ding, Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine, Interface Focus 2 (3) (2012) 366-377. [7] G. Wang, S.J. Liu, S.W. Ueng, E.C. Chan, The release of cefazolin and gentamicin from biodegradable PLA/PGA beads, Int. J. Pharm. 273 (1-2) (2004) 203-212. [8] K. Yamane, H. Sato, Y. Ichikawa, K. Sunagawa, Y. Shigaki, Development of an industrial production technology for high-molecular-weight polyglycolic acid, Polym. J. 46 (11) (2014) 769-775. [9] V. Botvin, S. Karaseva, D. Salikova, M. Dusselier, Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers, Polym. Degrad. Stab. 183 (2021) 109427. [10] Y. Reyhanoglu, E. Gokturk, Synthesis of polyglycolic acid copolymers from cationic copolymerization of C1 feedstocks and long chain epoxides, J. Saudi Chem. Soc. 23 (7) (2019) 879-886. [11] Y. Reyhanoglu, E. Sahmetlioglu, E. Gokturk, Alternative approach for synthesizing polyglycolic acid copolymers from C1 feedstocks and fatty ester epoxides, ACS Sustainable Chem. Eng. 7 (5) (2019) 5103-5110. [12] D. Rik De Clercq, D. Ekaterina Makshina, P. .B.F. Sels, P. . Michiel Dusselier, Catalytic gas-phase cyclization of glycolate esters: a novel route toward glycolide-based bioplastics, ChemCatChem 10 (24) (2018) 5649-5655. [13] M. Dusselier, P. Van Wouwe, A. Dewaele, P.A. Jacobs, B.F. Sels, GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production, Science 349 (6243) (2015) 78-80. [14] V. Botvin, A. Latypov, N. Ponarin, A. Filimoshkin, Synthesis of glycolide by catalytic depolymerization of glycolic acid oligomers modified by polyhydric alcohols, J. Phys.: Conf. Ser. 1145 (2019) 012019. [15] R. De Clercq, M. Dusselier, E. Makshina, B.F. Sels, Catalytic gas-phase production of lactide from renewable alkyl lactates, Angew. Chem. Int. Ed 57 (12) (2018) 3074-3078. [16] R. De Clercq, M. Dusselier, C. Poleunis, D.P. Debecker, L. Giebeler, S. Oswald, E. Makshina, B.F. Sels, Titania-silica catalysts for lactide production from renewable alkyl lactates: structure-activity relations, ACS Catal. 8 (9) (2018) 8130-8139. [17] H.W. Park, Y.K. Chang, Economically efficient synthesis of lactide using a solid catalyst, Org. Process Res. Dev. 21 (12) (2017) 1980-1984. [18] A. Vita, C. Italiano, D. Previtali, C. Fabiano, A. Palella, F. Freni, G. Bozzano, L. Pino, F. Manenti, Methanol synthesis from biogas: a thermodynamic analysis, Renew. Energy 118 (2018) 673-684. [19] S.S. Iyer, T. Renganathan, S. Pushpavanam, M. Vasudeva Kumar, N. Kaisare, Generalized thermodynamic analysis of methanol synthesis: Effect of feed composition, J. CO2 Util. 10 (2015) 95-104. [20] B.Z. Yao, W.J. Ma, S. Gonzalez-Cortes, T.C. Xiao, P.P. Edwards, Thermodynamic study of hydrocarbon synthesis from carbon dioxide and hydrogen, Greenh. Gases Sci. Technol. 7 (5) (2017) 942-957. [21] G. Pomalaza, R. De Clercq, M. Dusselier, B. Sels, How substituent effects influence the thermodynamics and kinetics of gas-phase transesterification of alkyl lactates to lactide using TiO2/SiO2, Appl. Catal. B Environ. 300 (2022) 120747. [22] N.G. Zanjani, A.K. Pirzaman, E. Yazdanian, Biodiesel production in the presence of heterogeneous catalyst of alumina: Study of kinetics and thermodynamics, Int. J. Chem. Kinet. 52 (7) (2020) 472-484. [23] S.J. Guo, H. Wang, Z.F. Qin, Z.K. Li, G.F. Wang, M. Dong, W.B. Fan, J.G. Wang, Feasibility, limit, and suitable reaction conditions for the production of alcohols and hydrocarbons from CO and CO2 through hydrogenation, a thermodynamic consideration, Ind. Eng. Chem. Res. 61 (46) (2022) 17027-17038. [24] M.S. Elmelawy, A. El-Meligy, H.A. Mawgoud, A.S. Morshedy, S.A. Hanafy, I.E. El-sayed, Synthesis and kinetics study of trimethylolpropane fatty acid triester from oleic acid methyl ester as potential biolubricant, Biomass Convers. Biorefin. 13 (3) (2023) 1645-1657. [25] Y.N. Guan, H.Q. Ma, W.Y. Chen, M.S. Li, G. Qian, D. Chen, X.G. Zhou, X.Z. Duan, Methyl methacrylate synthesis: thermodynamic analysis for oxidative esterification of methacrolein and aldol condensation of methyl acetate, Ind. Eng. Chem. Res. 59 (39) (2020) 17408-17416. [26] S.K. Kabra, E. Turpeinen, R.L. Keiski, G.D. Yadav, Direct synthesis of dimethyl carbonate from methanol and carbon dioxide: a thermodynamic and experimental study, J. Supercrit. Fluids 117 (2016) 98-107. [27] M.M. Chen, K.L. Yan, Y.Q. Cao, Y.R. Li, X.H. Ge, J. Zhang, X.Q. Gong, G. Qian, X.G. Zhou, X.Z. Duan, Thermodynamics insights into the selective hydrogenation of alkynes in C2 and C3 streams, Ind. Eng. Chem. Res. 60 (47) (2021) 16969-16980. [28] I. Banu, A.V. Brosteanu, G. Bumbac, G. Bozga, Ethanol conversion to butadiene: a thermodynamic analysis, Ind. Eng. Chem. Res. 60 (35) (2021) 13071-13083. [29] Q.Y. Huang, Y. Li, F.H. Yuan, L.P. Xiao, H.X. Hao, Y.L. Wang, Thermodynamic properties of enantiotropic polymorphs of glycolide, J. Chem. Thermodyn. 111 (2017) 106-114. [30] P. Koukkari, R. Pajarre, A Gibbs energy minimization method for constrained and partial equilibria, Pure Appl. Chem. 83 (6) 1243–1254. [31] S.W. Benson, J.H. Buss, Additivity rules for the estimation of molecular properties. thermodynamic properties, 29 (3) (1958) 546-572. [32] K. Shukla, V.C. Srivastava, Synthesis of diethyl carbonate from ethanol through different routes: a thermodynamic and comparative analysis, Can. J. Chem. Eng. 96 (1) (2018) 414-420. [33] W. Prachumsai, S. Pangtaisong, S. Assabumrungrat, P. Bunruam, C. Nakvachiratrakul, D. Saebea, P. Praserthdam, S. Soisuwan, Carbon dioxide reduction to synthetic fuel on zirconia supported copper-based catalysts and Gibbs free energy minimization: Methanol and dimethyl ether synthesis, J. Environ. Chem. Eng. 9 (1) (2021) 104979. [34] C. Tuygun, B. Ipek, CO2 hydrogenation to methanol and dimethyl ether at atmospheric pressure using Cu-Ho-Ga/γ-Al2O3 and Cu-Ho-Ga/ZSM-5: Experimental study and thermodynamic analysis, Turk. J. Chem. 45 (1) (2021) 231-247. [35] K. Stangeland, H.L. Li, Z.X. Yu, Thermodynamic analysis of chemical and phase equilibria in CO2 hydrogenation to methanol, dimethyl ether, and higher alcohols, Ind. Eng. Chem. Res. 57 (11) (2018) 4081-4094. [36] S. Adhikari, S. Fernando, S.R. Gwaltney, S.D. Filip To, R. Mark Bricka, P.H. Steele, A. Haryanto, A thermodynamic analysis of hydrogen production by steam reforming of glycerol, Int. J. Hydrog. Energy 32 (14) (2007) 2875-2880. [37] C.V. Miguel, M.A. Soria, A. Mendes, L.M. Madeira, Direct CO2 hydrogenation to methane or methanol from post-combustion exhaust streams-A thermodynamic study, J. Nat. Gas Sci. Eng. 22 (2015) 1-8. [38] J. Liu, Z.Q. Li, M.W. Wang, X.X. Wan, S.Z. Jia, Y.C. Cao, Z.G. Gao, Solid-liquid phase equilibrium of N, N'-diphenyl thiourea (DPTU) in twelve pure solvents: Solubility determination, correlation, molecular simulation and thermodynamic analysis, J. Chem. Thermodyn. 163 (2021) 106605. [39] M. Wang, H. Kaur, C.C. Chen, Thermodynamic modeling of HNO3-H2SO4-H2O ternary system with symmetric electrolyte NRTL model, AIChE. J. 63 (7) (2017) 3110-3117. |