[1] L.F. Lin, X. Han, B.X. Han, S.H. Yang, Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism, Chem. Soc. Rev. 50 (20) (2021) 11270-11292. [2] C.F. Zhang, F. Wang, Catalytic lignin depolymerization to aromatic chemicals, Acc. Chem. Res. 53 (2) (2020) 470-484. [3] Z.P. Fu, Y.P. Zhao, F.P. Wu, J.X. Xie, L.L. Qiu, J. Xiao, J. Liang, Y.H. Bai, F.J. Liu, J.P. Cao, Selective hydrogenolysis of C-O bonds in lignin model compounds and Kraft lignin over highly efficient NixCoyAl catalysts, Mol. Catal. 547 (2023) 113334. [4] H.Q. Guo, J.W. Zhao, Y. Chen, X.Y. Lu, Y. Yang, C.R. Ding, L.Z. Wu, L. Tan, J.L. Long, G.H. Yang, Y. Tang, N. Tsubaki, X.L. Gu, Mechanistic insights into hydrodeoxygenation of lignin derivatives over Ni single atoms supported on Mo2C, ACS Catal. 14 (2) (2024) 703-717. [5] M. Saleheen, O. Mamun, A. Mohan Verma, D. Sahsah, A. Heyden, Understanding the influence of solvents on the Pt-catalyzed hydrodeoxygenation of guaiacol, J. Catal. 425 (2023) 212-232. [6] C. Jiang, Y.C. Cai, T.T. Xu, B. Xiao, Z.Q. Hu, X. Wang, Vapor-phase hydrodeoxygenation of guaiacol for phenol production using bifunctional Ni/Cu-Beta zeolite catalysts, J. Energy Inst. 109 (2023) 101273. [7] F. Ge, H.H. Xia, J. Li, X.H. Yang, M.H. Zhou, J.C. Jiang, Selective hydrodeoxygenation of guaiacol to cyclohexanol over core-shell Cox@C@Ni catalysts under mild condition, Fuel Process. Technol. 245 (2023) 107729. [8] Y.L. Xu, Y.C. Deng, B. Liu, Z.Y. Liu, W.H. Wang, Y. Pan, B. Dong, Y.C. Li, C.L. Yin, H.L. Guo, Y.M. Chai, C.G. Liu, Hydrodeoxygenation of guaiacol to bio-hydrocarbons in alkaline condition on the Ni/AC catalyst with an “acid-switch”, Chem. Eng. J. 478 (2023) 147460. [9] J.X. Xie, Y.P. Zhao, Q. Li, L.L. Qiu, F.J. Liu, J. Liang, J. Li, J.P. Cao, Catalytic conversion of lignin and lignin-derived β-O-4 ether to cyclohexanols over a CeO2-doped carbon-supported nickel-based catalyst, ACS Sustainable Chem. Eng. 12 (2) (2024) 904-915. [10] S. Verma, M.N. Nadagouda, R.S. Varma, Visible light-mediated and water-assisted selective hydrodeoxygenation of lignin-derived guaiacol to cyclohexanol, Green Chem. 21 (6) (2019) 1253-1257. [11] J. Chen, Z.Y. Ma, J.H. Qin, M. Chen, L.K. Dong, W.W. Mao, X.Q. Zhou, Y. Long, J.T. Ma, Highly efficient and selective hydrodeoxygenation of guaiacol to cyclohexanol over a rod-like CoNi-C catalyst, Fuel 353 (2023) 129216. [12] P.H. Yan, E. Kennedy, M. Stockenhuber, Hydrodeoxygenation of guiacol over ion-exchanged ruthenium ZSM-5 and BEA zeolites, J. Catal. 396 (2021) 157-165. [13] S.K. Wu, P.C. Lai, Y.C. Lin, H.P. Wan, H.T. Lee, Y.H. Chang, Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts, ACS Sustainable Chem. Eng. 1 (3) (2013) 349-358. [14] M. Zhang, L. Xiang, G.L. Fan, L. Yang, F. Li, Unveiling the role of surface basic sites on ruthenium-based nanocatalysts for enhanced hydrodeoxygenation of guaiacol, Mol. Catal. 533 (2022) 112794. [15] M. Ishikawa, M. Tamura, Y. Nakagawa, K. Tomishige, Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru-Mn catalyst, Appl. Catal. B Environ. 182 (2016) 193-203. [16] M.T. Chen, Q.F. Zhong, M.H. Zhang, H. Huang, Y.X. Liu, Z.J. Wei, Aqueous phase partial hydrodeoxygenation of lignin-derived phenols over Al2O3-SiO2 microspheres supported RuMn multifunctional catalyst: Synergic effect among Ru, Mn and Al2O3-SiO2 support, Catal. Commun. 172 (2022) 106550. [17] R. Prajapati, M. Pandey, N. Tsunoji, R. Bandyopadhyay, M. Bandyopadhyay, Cyclo-addition of carbon dioxide to epoxides employing hierarchical silicoaluminophosphates molecular sieves, Mol. Catal. 550 (2023) 113599. [18] Z.L. Li, J.J. Wang, Y.Z. Qu, H.L. Liu, C.Z. Tang, S. Miao, Z.C. Feng, H.Y. An, C. Li, Highly selective conversion of carbon dioxide to lower olefins, ACS Catal. 7 (12) (2017) 8544-8548. [19] N.N. Yan, C. Ma, Y. Cao, X.N. Liu, L. Cao, P. Guo, P. Tian, Z.M. Liu, Rational design of a novel catalyst Cu-SAPO-42 for NH3-SCR reaction, Small 16 (33) (2020) 2000902. [20] K. Mathisen, M. Stockenhuber, D.G. Nicholson, In situ XAS and IR studies on Cu: SAPO-5 and Cu: SAPO-11: the contributory role of monomeric linear copper(i) species in the selective catalytic reduction of NOx by propene, Phys. Chem. Chem. Phys. 11 (26) (2009) 5476-5488. [21] M. Montoya-Urbina, D. Cardoso, J. Perez-Pariente, E. Sastre, T. Blasco, V. Fornes, Characterization and catalytic evaluation of SAPO-5 synthesized in aqueous and two-liquid phase medium in presence of a cationic surfactant, J. Catal. 173 (2) (1998) 501-510. [22] G. Basina, D. AlShami, K. Polychronopoulou, V. Tzitzios, V. Balasubramanian, F. Dawaymeh, G.N. Karanikolos, Y. Al Wahedi, Hierarchical AlPO4-5 and SAPO-5 microporous molecular sieves with mesoporous connectivity for water sorption applications, Surf. Coat. Technol. 353 (2018) 378-386. [23] S.L. Wang, N. Jiang, Q.Y. Zhang, H.B. Li, H.Y. Niu, T. Chen, G.Y. Wang, Solvent-free, efficient synthesis of methyl phenyl carbonate over an SBA-15 loaded Pb-Bi bimetallic catalyst, Microporous Mesoporous Mater. 335 (2022) 111792. [24] X.L. Zhao, G. Wu, X.S. Zheng, P. Jiang, J.D. Yi, H. Zhou, X.P. Gao, Z.Q. Yu, Y.E. Wu, A double atomic-tuned RuBi SAA/Bi@OG nanostructure with optimum charge redistribution for efficient hydrogen evolution, Angew. Chem. Int. Ed 62 (12) (2023) e202300879. [25] M.Y. Chen, Y.B. Huang, H. Pang, X.X. Liu, Y. Fu, Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems, Green Chem. 17 (3) (2015) 1710-1717. [26] J.D. Huang, J. Zeng, K.J. Zhu, R.Z. Zhang, J. Liu, High-performance aqueous zinc-manganese battery with reversible Mn2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles, Nanomicro Lett. 12 (1) (2020) 110. [27] J.H. Zhang, H.F. Xiao, C. Du, X.X. Qin, S. Li, J.M. Sun, J.H. Fang, C.B. Zhang, Activating MnO with embedded Ru for enhanced selective hydrogenolysis of C-O bonds in lignin-derived ethers over Ru-MnO/Al2O3, ACS Catal. 12 (15) (2022) 9812-9822. [28] T.S. Khan, D. Singh, P.P. Samal, S. Krishnamurty, P.L. Dhepe, Mechanistic investigations on the catalytic transfer hydrogenation of lignin-derived monomers over Ru catalysts: theoretical and kinetic studies, ACS Sustainable Chem. Eng. 9 (42) (2021) 14040-14050. [29] A.K. Deepa, D.P.L. Dhepe, Function of metals and supports on the hydrodeoxygenation of phenolic compounds, ChemPlusChem 79 (11) (2014) 1573-1583. [30] R.R. Barton, M. Carrier, C. Segura, J.L.G. Fierro, S. Park, H.H. Lamb, N. Escalona, S.W. Peretti, Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 2. Catalytic hydrodeoxygenation reactions of lignin model compounds in organic and aqueous systems, Appl. Catal. A Gen. 562 (2018) 294-309. |