Chinese Journal of Chemical Engineering ›› 2025, Vol. 82 ›› Issue (6): 1-14.DOI: 10.1016/j.cjche.2025.02.006
Mingqiang Chen1, Tingting Zhu1, Yishuang Wang1, Defang Liang1, Chang Li2, Haosheng Xin1, Jun Wang1
Received:2024-11-29
Revised:2025-02-13
Accepted:2025-02-24
Online:2025-03-05
Published:2025-08-19
Contact:
Yishuang Wang,E-mail:yswang@aust.edu.cn
Supported by:Mingqiang Chen1, Tingting Zhu1, Yishuang Wang1, Defang Liang1, Chang Li2, Haosheng Xin1, Jun Wang1
通讯作者:
Yishuang Wang,E-mail:yswang@aust.edu.cn
基金资助:Mingqiang Chen, Tingting Zhu, Yishuang Wang, Defang Liang, Chang Li, Haosheng Xin, Jun Wang. Catalytic oxidation of methane for methanol production over copper sepiolite: Effect of noble metals[J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 1-14.
Mingqiang Chen, Tingting Zhu, Yishuang Wang, Defang Liang, Chang Li, Haosheng Xin, Jun Wang. Catalytic oxidation of methane for methanol production over copper sepiolite: Effect of noble metals[J]. 中国化学工程学报, 2025, 82(6): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.02.006
| [1] C. Li, Y. Qin, T. Guo, J. Shen, Y. Yang, Supercritical methane adsorption in coal and implications for the occurrence of deep coalbed methane based on dual adsorption modes, Chem. Eng. J. 474 (2023) 145931. [2] G.A. Foulds, B.F. Gray, Homogeneous gas-phase partial oxidation of methane to methanol and formaldehyde, Fuel Process. Technol. 42 (2-3) (1995) 129-150. [3] A.A. Latimer, A. Kakekhani, A.R. Kulkarni, J.K. Noerskov, Direct methane to methanol: the selectivity-conversion limit and design strategies, ACS Catal. 8 (8) (2018) 6894-6907. [4] R, Manoj, M Ranocchiari, J. A. van Bokhoven, The direct catalytic oxidation of methane to methanol-a critical assessment, Angewandte Chemie International Edition 56 (52) (2017) 16464-16483. [5] N.F. Dummer, D.J. Willock, Q. He, M.J. Howard, R.J. Lewis, G.D. Qi, S.H. Taylor, J. Xu, D. Bethell, C.J. Kiely, G.J. Hutchings, Methane oxidation to methanol, Chem. Rev. 123 (9) (2023) 6359-6411. [6] B.Z. Han, Y. Yang, Y.Y. Xu, U.J. Etim, K. Qiao, B.J. Xu, Z.F. Yan, A review of the direct oxidation of methane to methanol, Chin. J. Catal. 37 (8) (2016) 1206-1215. [7] M.J. da Silva, Synthesis of methanol from methane: challenges and advances on the multi-step (syngas) and one-step routes (DMTM), Fuel Process. Technol. 145 (2016) 42-61. [8] X. Yu, J.N. Mao, B. Wu, Y. Wei, Y.H. Sun, P. Liangshu Zhong, Boosting direct oxidation of methane with molecular oxygen at low temperature over Rh/ZSM-5 catalyst, ChemCatChem 15 (8) (2023) e202300077. [9] C.S. Wang, Y.S. Wang, M.Q. Chen, D.F. Liang, W. Cheng, C. Li, Z.L. Yang, J. Wang, Hydrogen production from tar steam reforming over hydrangea-like co-phyllosilicate catalyst derived from Co/Sepiolite, Int. J. Hydrog. Energy 48 (7) (2023) 2542-2557. [10] J.J. Chen, S.K. Wang, L. Peres, V. Colliere, K. Philippot, P. Lecante, Y.Q. Chen, N. Yan, Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water, Catal. Sci. Technol. 11 (10) (2021) 3493-3500. [11] T. Yu, Z. Li, L. Lin, S.Q. Chu, Y. Su, W.Y. Song, A.Q. Wang, B.M. Weckhuysen, W.H. Luo, Highly selective oxidation of methane into methanol over Cu-promoted monomeric Fe/ZSM-5, ACS Catal. 11 (11) (2021) 6684-6691. [12] S.X. Bai, F.F. Liu, B.L. Huang, F. Li, H.P. Lin, T. Wu, M.Z. Sun, J.B. Wu, Q. Shao, Y. Xu, X.Q. Huang, High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst, Nat. Commun. 11 (1) (2020) 954. [13] Z.C. Xu, J. Kang, E.D. Park, Continuous gas-phase oxidation of methane into methanol over Cu-mordenite, Microporous Mesoporous Mater. 360 (2023) 112727. [14] R.J. Passini, M. Picinini, J.M.C. Bueno, E.A. Urquieta-Gonzalez, Direct methane to methanol stepwise conversion over Cu-oxo species in zeolites-Insights on the Cu-zeolite activation in air or helium from in situ UV-Vis analyses, Mol. Catal. 530 (2022) 112605. [15] L. Tao, I. Lee, R. Khare, A. Jentys, J.L. Fulton, M. Sanchez-Sanchez, J.A. Lercher, Speciation of Cu-oxo clusters in ferrierite for selective oxidation of methane to methanol, Chem. Mater. 34 (10) (2022) 4355-4363. [16] J. Pokhrel, D.F. Shantz, Continuous partial oxidation of methane to methanol over Cu-SSZ-39 catalysts, J. Catal. 421 (2023) 300-308. [17] F. Chen, J.M. Liang, F. Wang, X.Y. Guo, W.Z. Gao, Y. Kugue, Y.L. He, G.H. Yang, P. Reubroycharoen, T. Vitidsant, N. Tsubaki, Improved catalytic activity and stability of Cu/ZnO catalyst by boron oxide modification for low-temperature methanol synthesis, Chem. Eng. J. 458 (2023) 141401. [18] L.N. Wilcox, J. Rebolledo-Oyarce, A.D. Mikes, Y.J. Wang, W.F. Schneider, R. Gounder, Structure and reactivity of binuclear Cu active sites in Cu-CHA zeolites for stoichiometric partial methane oxidation to methanol, ACS Catal. 14 (5) (2024) 3647-3663. [19] D. Plessers, A.J. Heyer, H.M. Rhoda, M.L. Bols, E.I. Solomon, R.A. Schoonheydt, B.F. Sels, Tuning copper active site composition in Cu-MOR through co-cation modification for methane activation, ACS Catal. 13 (3) (2023) 1906-1915. [20] B. Ipek, M.J. Wulfers, H. Kim, F. Goltl, I. Hermans, J.P. Smith, K.S. Booksh, C.M. Brown, R.F. Lobo, Formation of [Cu2O2]2+ and [Cu2O]2+ toward C-H bond activation in Cu-SSZ-13 and Cu-SSZ-39, ACS Catal. 7 (7) (2017) 4291-4303. [21] M.A. Artsiusheuski, J.A. van Bokhoven, V.L. Sushkevich, Structure of selective and nonselective dicopper (II) sites in CuMFI for methane oxidation to methanol, ACS Catal. 12 (24) (2022) 15626-15637. [22] H.L. Zhang, P.J. Han, D.F. Wu, C.C. Du, J.F. Zhao, K.H.L. Zhang, J.D. Lin, S.L. Wan, J.Y. Huang, S. Wang, H.F. Xiong, Y. Wang, Confined Cu-OH single sites in SSZ-13 zeolite for the direct oxidation of methane to methanol, Nat. Commun. 14 (1) (2023) 7705. [23] Y.R. Jeong, H. Jung, J. Kang, J.W. Han, E.D. Park, Continuous synthesis of methanol from methane and steam over copper-mordenite, ACS Catal. 11 (3) (2021) 1065-1070. [24] B. Wu, T.J. Lin, M. Huang, S.G. Li, J. Li, X. Yu, R.O. Yang, F.F. Sun, Z. Jiang, Y.H. Sun, L.S. Zhong, Tandem catalysis for selective oxidation of methane to oxygenates using oxygen over PdCu/zeolite, Angew. Chem. Int. Ed 61 (24) (2022) e202204116. [25] G.Q. Fang, F.F. Wei, J. Lin, Y.L. Zhou, L. Sun, X. Shang, S. Lin, X.D. Wang, Retrofitting Zr-oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity, J. Am. Chem. Soc. 145 (24) (2023) 13169-13180. [26] E.D. German, M. Sheintuch, Predicting CH4 dissociation kinetics on metals: trends, sticking coefficients, H tunneling, and kinetic isotope effect, J. Phys. Chem. C 117 (44) (2013) 22811-22826. [27] S.X. Bai, Q. Yao, Y. Xu, K.L. Cao, X.Q. Huang, Strong synergy in a lichen-like RuCu nanosheet boosts the direct methane oxidation to methanol, Nano Energy 71 (2020) 104566. [28] J.C. Fan, S.X. Liang, K.X. Zhu, J. Mao, X.J. Cui, C. Ma, L. Yu, D.H. Deng, Boosting room-temperature conversion of methane via confining Cu atoms in ultrathin Ru nanosheets, Chem Catal. 2 (9) (2022) 2253-2261. [29] M.H. Groothaert, P.J. Smeets, B.F. Sels, P.A. Jacobs, R.A. Schoonheydt, Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites, J. Am. Chem. Soc. 127 (5) (2005) 1394-1395. [30] V.L. Sushkevich, D. Palagin, J.A. van Bokhoven, The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol, Angew. Chem. Int. Ed 57 (29) (2018) 8906-8910. [31] M.H. Mahyuddin, T. Tanaka, Y. Shiota, A. Staykov, K. Yoshizawa, Methane partial oxidation over [Cu2(μ-O)]2+ and [Cu3(μ-O)3]2+ active species in large-pore zeolites, ACS Catal. 8 (2) (2018) 1500-1509. [32] J.G. Wang, J.B. Zhang, C. Xing, T.S. Jin, J.P. Liu, M.T. Ju, X.J. Tang, Unique responses of Cu-SSZ-13 toward phosphorus: Al atoms on zeolite framework versus varied Cu species, Chem. Eng. J. 455 (2023) 140379. [33] P.P. Xiao, Y. Wang, Y. Lu, T. De Baerdemaeker, A.N. Parvulescu, U. Muller, D. De Vos, X.J. Meng, F.S. Xiao, W.P. Zhang, B. Marler, U. Kolb, H. Gies, T. Yokoi, Effects of Al distribution in the Cu-exchanged AEI zeolites on the reaction performance of continuous direct conversion of methane to methanol, Appl. Catal. B Environ. 325 (2023) 122395. [34] P.P. Xiao, Y. Wang, K. Nakamura, Y. Lu, T. De Baerdemaeker, A.N. Parvulescu, U. Muller, D. De Vos, X.J. Meng, F.S. Xiao, W.P. Zhang, B. Marler, U. Kolb, R. Osuga, M. Nishibori, H. Gies, T. Yokoi, Highly effective Cu/AEI zeolite catalysts contribute to continuous conversion of methane to methanol, ACS Catal. 13 (16) (2023) 11057-11068. [35] P.J. Han, Z.X. Zhang, Z. Chen, J.D. Lin, S.L. Wan, Y. Wang, S. Wang, Critical role of Al pair sites in methane oxidation to methanol on Cu-exchanged mordenite zeolites, Catalysts 11 (6) (2021) 751. [36] C.W. Jones, D.J. Smith, T.B. Gunnoe, H.M. Zhao, P. Sautet, S.L. Scott, B.Q. Xu, Preparing your manuscript for submission to ACS catalysis, ACS Catal. 4 (8) (2014) 2827-2828. [37] J. Meyet, D. Keith Searles, D.M.A. Newton, D. Michael Worle, D.A.P. van Bavel, D.A.D. Horton, P. .J.A. van Bokhoven, P. . Christophe Coperet, Monomeric copper(II) sites supported on alumina selectively convert methane to methanol, Angew. Chem. Int. Ed. 58 (29) (2019) 9841-9845. [38] B. Guo, X.Z. Lin, Z.Y. Yuan, Natural clay attapulgite as the raw material for synthesis of Al/Ti/Mg-containing mesoporous silicates with cubic, 3D hexagonal, and lamellar mesostructures, J. Sol Gel Sci. Technol. 85 (3) (2018) 638-646. [39] C.S. Wang, Y.S. Wang, M.Q. Chen, D.F. Liang, W. Cheng, C. Li, Z.L. Yang, J. Wang, Understanding relationship of sepiolite structure tailoring and the catalytic behaviors in glycerol steam reforming over Co/sepiolite derived co-phyllosilicate catalyst, Renew. Energy 183 (2022) 304-320. [40] M.Q. Chen, Z.N. Zhou, Y.S. Wang, Z. Fang, D.F. Liang, L.Y. Li, H.S. Xin, C. Li, G. Yuan, J. Wang, Lignin catalytic depolymerization for guaiacols and alkylphenols over co-Zr/sepiolite under supercritical ethanol, Energy Fuels 38 (5) (2024) 4256-4272. [41] Z.Y. Tang, Y.S. Wang, M.Q. Chen, H. Li, L.Y. Li, Z.N. Zhou, C. Li, Z.L. Yang, J. Wang, Lignin catalytic depolymerization for phenolic monomers: boosting the selective cleavage of β-O-4 bonds of lignin by Mo–O and Al(IV)-O-BO2 interfacial sites in B-Mo/sepiolite, ACS Sustainable Chem. Eng. 11 (47) (2023) 16722-16738. [42] C.S. Wang, Y.S. Wang, M.Q. Chen, D.F. Liang, Z.L. Yang, W. Cheng, Z.Y. Tang, J. Wang, H. Zhang, Recent advances during CH4 dry reforming for syngas production: a mini review, Int. J. Hydrog. Energy 46 (7) (2021) 5852-5874. [43] A.J. Xie, Y.R. Tang, X.Y. Huang, X. Jin, P.F. Gu, S.P. Luo, C. Yao, X.Z. Li, Three-dimensional nanoflower MnCrO/Sepiolite catalyst with increased SO2 resistance for NH3-SCR at low temperature, Chem. Eng. J. 370 (2019) 897-905. [44] J.T. Jin, W.Z. Li, L.L. Zhang, L.Y. Zhu, L.Q. Wang, Z. Zhou, CuxOy nanoparticles and Cu-OH motif decorated ZSM-5 for selective methane oxidation to methyl oxygenates, J. Colloid Interface Sci. 645 (2023) 964-973. [45] Z.Y. Liu, E.W. Huang, I. Orozco, W.J. Liao, R.M. Palomino, N. Rui, T. Duchon, S. Nemsak, D.C. Grinter, M. Mahapatra, P. Liu, J.A. Rodriguez, S.D. Senanayake, Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst, Science 368 (6490) (2020) 513-517. [46] R.N. Xu, N. Liu, C.N. Dai, Y. Li, J. Zhang, B. Wu, G.Q. Yu, B.H. Chen, H2 O-built proton transfer bridge enhances continuous methane oxidation to methanol over Cu-BEA zeolite, Angew. Chem. Int. Ed 60 (30) (2021) 16634-16640. [47] Y.S. Wang, C.S. Wang, M.Q. Chen, J.X. Hu, Z.Y. Tang, D.F. Liang, W. Cheng, Z.L. Yang, J. Wang, H. Zhang, Influence of CoAl2O4 spinel and co-phyllosilicate structures derived from Co/sepiolite catalysts on steam reforming of bio-oil for hydrogen production, Fuel 279 (2020) 118449. [48] H.V. Le, S. Parishan, A. Sagaltchik, H. Ahi, A. Trunschke, R. Schomacker, A. Thomas, Stepwise methane-to-methanol conversion on CuO/SBA-15, Chemistry 24 (48) (2018) 12592-12599. [49] H.V. Le, S. Parishan, A. Sagaltchik, C. Gobel, C. Schlesiger, W. Malzer, A. Trunschke, R. Schomacker, A. Thomas, Solid-state ion-exchanged Cu/mordenite catalysts for the direct conversion of methane to methanol, ACS Catal. 7 (2) (2017) 1403-1412. [50] Y. Fu, C.S. Li, S.X. An, W.Z. Li, L. Yuan, Cu and Zn bimetallic co-modified H-MOR catalyst for direct oxidation of low-concentration methane to methanol, ACS Omega 8 (30) (2023) 27179-27189. [51] I. Hussain, S. Ganiyu, H. Alasiri, K. Alhooshani, Highly dispersed Cu-anchored nanoparticles based mordenite zeolite catalyst (Cu-MOR): Influence of the different preparation methods for direct methane oxidation (DMTM) to methanol, J. Energy Inst. 109 (2023) 101269. [52] V.L. Sushkevich, J.A. van Bokhoven, Effect of Broensted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite, Catal. Sci. Technol. 8 (16) (2018) 4141-4150. [53] P.P. Xiao, Y. Wang, K. Nakamura, Y. Lu, J.N. Kondo, H. Gies, T. Yokoi, C-Axis-oriented sheet-like Cu/AEI zeolite contributes to continuous direct oxidation of methane to methanol, Catal. Sci. Technol. 13 (20) (2023) 5831-5841. [54] C. Lamberti, A. Zecchina, E. Groppo, S. Bordiga, Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy, Chem. Soc. Rev. 39 (12) (2010) 4951-5001. [55] S. Bordiga, D. Scarano, G. Spoto, A. Zecchina, C. Lamberti, C. Otero Arean, Infrared study of carbon monoxide adsorption at 77 K on faujasites and ZSM-5 zeolites, Vib. Spectrosc. 5 (1) (1993) 69-74. [56] R. Kefirov, A. Penkova, K. Hadjiivanov, S. Dzwigaj, M. Che, Stabilization of Cu+ ions in BEA zeolite: study by FTIR spectroscopy of adsorbed CO and TPR, Microporous Mesoporous Mater. 116 (1-3) (2008) 180-187. [57] M.H. Groothaert, J.A. van Bokhoven, A.A. Battiston, B.M. Weckhuysen, R.A. Schoonheydt, Bis(mu-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV-vis-near-IR, and kinetic study, J. Am. Chem. Soc. 125 (25) (2003) 7629-7640. [58] H. Lee, C. Kwon, C. Keum, H.E. Kim, H. Lee, B. Han, S.Y. Lee, Methane partial oxidation by monomeric Cu active center confined on ZIF-7, Chem. Eng. J. 450 (2022) 138472. [59] E. Borfecchia, D.K. Pappas, M. Dyballa, K.A. Lomachenko, C. Negri, M. Signorile, G. Berlier, Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS, Catal. Today 333 (2019) 17-27. [60] H.J. Sokol, A.M. Ebrahim, S. Caratzoulas, A.I. Frenkel, J.A. Valla, In situ XAFS, XRD, and DFT characterization of the sulfur adsorption sites on Cu and Ce exchanged Y zeolites, J. Phys. Chem. C 126 (3) (2022) 1496-1512. [61] V.L. Sushkevich, O.V. Safonova, D. Palagin, M.A. Newton, J.A. van Bokhoven, Structure of copper sites in zeolites examined by Fourier and wavelet transform analysis of EXAFS, Chem. Sci. 11 (20) (2020) 5299-5312. [62] F. Goltl, S. Bhandari, E.A. Lebron-Rodriguez, J.I. Gold, D.J. Hutton, S.I. Zones, I. Hermans, J.A. Dumesic, M. Mavrikakis, Exploring the impact of active site structure on the conversion of methane to methanol in Cu-exchanged zeolites, Angew. Chem. Int. Ed 63 (23) (2024) e202403179. [63] Y. Tsuchimura, H. Yoshida, M. Machida, S. Nishimura, K. Takahashi, J. Ohyama, Investigation of the active-site structure of Cu-CHA catalysts for the direct oxidation of methane to methanol using in situ UV-vis spectroscopy, Energy Fuels 37 (13) (2023) 9411-9418. [64] J.S. Woertink, P.J. Smeets, M.H. Groothaert, M.A. Vance, B.F. Sels, R.A. Schoonheydt, E.I. Solomon, A [Cu2O] 2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol, Proc. Natl. Acad. Sci. USA 106 (45) (2009) 18908-18913. [65] J. Ohyama, Y. Tsuchimura, A. Hirayama, H. Iwai, H. Yoshida, M. Machida, S. Nishimura, K. Kato, K. Takahashi, Relationships among the catalytic performance, redox activity, and structure of Cu-CHA catalysts for the direct oxidation of methane to methanol investigated using In situ XAFS and UV-vis spectroscopies, ACS Catal. 12 (4) (2022) 2454-2462. [66] K.Z. Chen, Z.H. Gan, S. Horstmeier, J.L. White, Distribution of aluminum species in zeolite catalysts: 27Al NMR of framework, partially-coordinated framework, and non-framework moieties, J. Am. Chem. Soc. 143 (17) (2021) 6669-6680. [67] X.L. Xie, C. Li, Z.H. Lu, Y.S. Wang, W.Q. Yang, M.Q. Chen, W.Z. Li, Noble metal modified copper-exchanged mordenite zeolite (Cu-ex-MOR) catalysts for catalyzing the methane efficient gas-phase synthesis methanol, Energy 300 (2024) 131595. [68] V.L. Sushkevich, R. Verel, J.A. van Bokhoven, Pathways of methane transformation over copper-exchanged mordenite as revealed by in situ NMR and IR spectroscopy, Angew. Chem. Int. Ed 59 (2) (2020) 910-918. [69] Y.S. Wang, B.L. Qin, M.Q. Chen, D.F. Liang, Z.H. Lu, H.R. Wang, C. Li, G. Yuan, J. Wang, L. Yuan, Preparation of Cu-based spherical micromesoporous material by using sepiolite toward methanol production from catalytic oxidation of low-concentration coalbed methane, Ind. Eng. Chem. Res. (2024) acs.iecr.3c04664. [70] C.X. Zhou, S.S. Li, S. He, Z.G. Zhao, Y. Jiao, H.L. Zhang, Temperature-dependant active sites for methane continuous conversion to methanol over Cu-zeolite catalysts using water as the oxidant, Fuel 329 (2022) 125483. |
| [1] | Baowei Wang, Jiangzhou Kong, Xiaoyan Li. Preparation of MoO3/γ-Al2O3 sulfur-resistant methanation catalyst with segmented plasma fluidized bed [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 142-150. |
| [2] | Xiangli Liu, Yiqing Zeng, Jiahao Chen, Zhaoxiang Zhong, Weihong Xing. Research progress on the monolithic catalyst for hydrogenation of CO2 to methane [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 184-197. |
| [3] | Hu Wang, Qingrong Zheng. Structural modification and heat transfer enhancement on HKUST-1 for adsorbed natural gas [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 109-119. |
| [4] | Zhiwei Zhao, Yating Wang, Yuhao Tang, Xiaoqing Wang, Feifei Zhang, Jiangfeng Yang. Copper-based metal–organic framework with two methane traps for efficient CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 234-240. |
| [5] | Tianxiao Huang, Binhang Yan. Evaluation and application of kinetic models for Cu-catalyzed acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 209-219. |
| [6] | Junjie Cai, Xijian Li, Hao Sui, Honggao Xie. Study on the evolution of solid–liquid–gas in multi-scale pore methane in tectonic coal [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 122-131. |
| [7] | Yi-Fei Liang, Jin-Rong Lu, Shang-Kun Tian, Wen-Quan Cui, Li Liu. Pt nanoclusters modified porous g-C3N4 nanosheets to significantly enhance hydrogen production by photocatalytic water reforming of methanol [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 40-50. |
| [8] | Jinqiang Liang, Danzhu Liu, Shuliang Xu, Mao Ye. Modeling and analysis of air combustion and steam regeneration in methanol to olefins processes [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 94-103. |
| [9] | Tongming Su, Bo Gong, Xinling Xie, Xuan Luo, Zuzeng Qin, Hongbing Ji. Effect of cobalt on the activity of nickel-based/magnesium-substituted hydroxyapatite catalysts for dry reforming of methane [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 281-291. |
| [10] | Zhun Li, Jinyang Zhao, Ping Li, Yadong Yu, Chenxi Cao. A comparative techno-economic analysis for implementation of carbon dioxide to chemicals processes [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 86-101. |
| [11] | Songling Guo, Xun Tao, Fan Zhou, Mengyan Yu, Yufan Wu, Yunfei Gao, Lu Ding, Fuchen Wang. Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 106-116. |
| [12] | Mingxue Yin, Bo Jia, Kuiyi You, Bo Jin, Yangqiang Huang, Xiao Luo, Zhiwu Liang. A highly efficient La-modified ZnAl-LDO catalyst and its performance in the synthesis of dimethyl carbonate from methyl carbamate and methanol [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 9-23. |
| [13] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
| [14] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
| [15] | Pengcheng Zou, Kai Wang. Methanolysis of amides under high-temperature and high-pressure conditions with a continuous tubular reactor [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 170-178. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
