[1] D.W. Schindler, Factors regulating phytoplankton production and standing Crop in the world's freshwaters, Limnol. Oceanogr. 23 (1978) 478.[2] R.A. Jones, G.F. Lee, Septic tank wastewater disposal systems as phosphorus sources for surface waters, Water Pollut. Control Fed. 51 (1979) 2764-2775.[3] R.A. Vollenweider, Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication, Organisation for Economic Co-operation and Development, Technical Report, DAS/CSI, 68, 1968, p. 27.[4] I.D.McKelvie, D. Peat, P.J.Worsfold, Analytical perspective, techniques for the quantification and speciation of phosphorus in natural waters, Anal. Proc. 32 (1995) 437.[5] W. Maher, L.Woo, Procedures for the storage and digestion of natural waters for the determination of filterable reactive phosphorus, total filterable phosphorus and total phosphorus, Anal. Chim. Acta. 375 (1998) 5-47.[6] S. Hinkamp, G. Schwedt, Determination of total phosphorus in waters with amperometric detection by coupling of flow-injection analysis with continuous microwave oven digestion, Anal. Chim. Acta. 236 (1990) 345-350.[7] 4500 NB, Line UV/persulfate digestion and oxidation and flow injection analysis, APHA, AWWA, WPCF, Standard Methods for the Examination of Water and WastewaterAmerican Public Health Association, Washington, DC, 2000.[8] L. Woo, W. Maher, Determination of phosphorus in turbid waters using alkaline potassium peroxodisulphate digestion, Anal. Chim. Acta. 315 (1995) 123-135.[9] Method 4500-P, in: L.S. Clescerl, A.E. Greenberg, A.D. Eaton (Eds.), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, 1998.[10] Method 365.1, in: J.W. O'Dell (Ed.), Determination of Phosphorus by Semi-automated Colorimetry, Environmental Monitoring Systems Laboratory, Office of Research and Development, USEPA, Cincinnati, OH, 1993.[11] W. Maher, F. Krikowa, D.Wruck, H. Louie, T. Nguyen, W.Y. Huang, Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath: Comparison with Kjeldahl digestion, Anal. Chim. Acta. 463 (2002) 283-293.[12] X.L. Huang, J.Z. Zhang, Neutral persulfate digestion at sub-boiling temperature in an oven for total dissolved phosphorus determination in natural waters, Talanta 78 (2009) 1129-1135.[13] R.L. Benson, I.D.MaKelvie, B.T. Hart, Y.B. Truong, I.C. Hamilton, Determination of total phosphorus in waters and wastewaters by on-line UV/thermal induced digestion and flow injection analysis, Anal. Chim. Acta. 326 (1996) 29-39.[14] S.O. Engblom, The phosphate sensor, Biosens. Bioelectron. 13 (1998) 981-994.[15] F. Kivlehan, W.J. Mace, H.A. Moynihan, Damien, W.M. Arrigan, Electrochim. Acta 54 (2009) 1919-1924.[16] Q. Yang, Y. Liao, L. Mao, Kinetics of photocatalytic degradation of gaseous organic compounds on Modified TiO2/AC composite photocatalyst, Chin. J. Chem. Eng. 20 (3) (2012) 572-576.[17] J. Chu, L. Zhong, Photocatalytic degradation of methylene blue with side-glowing optical fiber deliverying visible light, Chin. J. Chem. Eng. 20 (5) (2012) 895-899.[18] M.T. Oms, A. Cerda, V. Cerda, Sequential injection systemfor on-line analysis of total nitrogen with UV-mineralization, Talanta 59 (2003) 319-326.[19] L. Shan, J. Mi, L. Dong, Zh. Han, B. Liu, Enhanced photocatalytic properties of silver oxide loaded bismuth vanadate, Chin. J. Chem. Eng. 22 (8) (2014) 909-913.[20] A. Bozzi, I. Guasaquillo, J. Kiwi, Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts, Appl. Catal. B Environ. 51 (2004) 203-211.[21] D. Daniel, I.G.R. Grutz, Microfluidic cell with a TiO2-modified gold electrode irradiated by an UV-LED for in situ photocatalytic decomposition of organic matter and its potentiality for voltammetric analysis of metal ions, Electrochem. Commun. 9 (2007) 522-528.[22] Y. Xie, X. Shen, C. Yuan, A novel multi-tube photoreactor with UV light and immobilized TiO2 thin film for water treatment, Chin. J. Chem. Eng. 11 (2003) 27-32.[23] L.H. Gan, Y.D.Wang, Z.X. Hao, Z.J. Xu, L.W. Chen, Preparation of TiO2/SiO2 aerogels by non-supercritical dryingmethod and their photocatalytic activity for degradation of pyridine, Chin. J. Chem. Eng. 13 (6) (2005) 758-763.[24] M.S. Siboni, M.T. Samadi, J.K. Yang, S.M. Lee, Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study, Desalin. Water Treat. 40 (2012) 77-83.[25] E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalin. Water Treat. 252 (2010) 46-52.[26] M. U?urlu, M.H. Karao?lu, Removal of AOX, total nitrogen and chlorinated lignin from bleached Krsft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as photocatalyst, Environ. Sci. Pollut. Res. 16 (2009) 265-273.[27] J.M. Herrmann, Photocatalysis fundamentals revisited to avoid severalmisconceptions, Appl. Catal. B Environ. 99 (2010) 461-468.[28] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (alizarin S, crocein orange G,methyl red, congo red,methylene blue) inwater by UV-irradiated titania, Appl. Catal. B Environ. 39 (2002) 75-90.[29] J.C. Garcia, J.L. Oliveira, A.E.C. Silva, C.C. Oliveira, J. Nozaki, N.E. Souza, Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems, J. Hazard. Mater. 147 (2007) 105-110.[30] X.Z. Shen, Z.C. Liu, S.M. Xie, J. Guo, Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination, J. Hazard. Mater. 162 (2009) 1193-1198.[31] E. Dorjpalam, M. Takahashi, Y. Tokuda, T. Yoko, Controlling carrier density and its effect on I-V characteristics of the anatase-TiO2 thin films prepared by a sputter deposition method, Thin Solid Films 483 (2005) 147-151.[32] M. Hitchman, F. Tian, Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol, J. Electroanal. Chem. 538 (2002) 165-172.[33] E. Brillas, R.M. Bastida, E. Llosa, J. Casado, Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatmentusing a carbon-PTFEO-fed cathode, J. Electrochem. Soc. 142 (1995) 1733.[34] N. Guettaï, H.A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study, Desalination 185 (2005) 439-448.[35] A.J. Attia, Photocatalytic iodometry over naked and sensitized zinc oxide, Nat. J. Chem. 32 (2008) 599-609.[36] I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal. B Environ. 49 (2004) 1-14.[37] S.B. Kima, S.C. Hongb, Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Appl. Catal. B Environ. 35 (2002) 305-315.[38] J.M. Hunt, M.D. Lewan, R.J.C. Hennet, Modeling oil generation with time-temperature index graphs based on the Arrhenius equation, Am. Assoc. Pet. Geol. 75 (1991) 795-807.[39] K.J. Laidler, The development of the Arrhenius equation, J. Chem. Educ. 61 (1984) 494-498. |