[1] K. Young, J. Nei, B. Huang, M.A. Fetcenko, Studies of off stoichiometric AB2 metal hydride alloy: Part 2. Hydrogen storage and electrochemical properties, Int. J. Hydrog. Energy 36 (17) (2011) 11146-11154.[2] L.B. Wang, X.Y. Zhan, Z.Z. Yang, C.A. Ma, Catalytic hydrolysis of borohydride for fuel cells, Chin. J. Chem. Eng. 19 (4) (2011) 693-697.[3] S. Semboshi, N. Masahashi, T.J. Konno, M. Sakurai, S. Hanada, Composition dependence of hydrogen absorbing properties in melt quenched and annealed TiMn2 based alloys, J. Alloys Compd. 379 (2004) 290-297.[4] F.F. Azenwi, H.W. Langmi, G.S. McGrady, Hydrogenation of LiH/Al catalyzed with TiN, TiMn2 and LaNi5, Int. J. Hydrog. Energy 37 (13) (2012) 10210-10214.[5] X.Q. Chen, V.T. Witusiewicz, R. Podloucky, P. Rogl, F. Sommer, Computational and experimental study of phase stability, cohesive properties,magnetismand electronic structure of TiMn2, Acta Mater. 51 (2003) 1239-1247.[6] K.Mostafa, S. Hamidreza, S. Ali, S. Ahmad, A.A. Abolfazl, Hydrogen storage properties of Ti0.72Zr0.28Mn1.6V0.4 alloy prepared by mechanical alloying and copper boat induction melting, Int. J. Hydrog. Energy 39 (13) (2014) 12784-12788.[7] F. Fang, Y. Li, Q. Zhang, L. Sun, Z. Shao, D. Sun, Hydrogen storage properties of TiMn1.5V0.2-based alloys for application to fuel cell system, J. Power Sources 195 (24) (2010) 8215-8221.[8] K. Ramya, N. Rajalakshmi, P. Sridhar, B. Sivasankar, Electrochemical studies on the effect of nickel substitution in TiMn alloys, J. Alloys Compd. 352 (2003) 315-324.[9] S. Semboshi, M. Sakurai, N. Masahashi, T.J. Konno, S. Hanada, Effect of structural changes on degradation of hydrogen absorbing capacity in cyclically hydrogenated TiMn2 based alloys, J. Alloys Compd. 376 (2004) 232-240.[10] J.L. Bobet, B. Darriet, Relationship between hydrogen sorption properties and crystallography for TiMn2 based alloys, Int. J. Hydrog. Energy 25 (2000) 767-772.[11] M.J. Choi, H.S. Hong, K.S. Lee, Electrochemical characteristics of the composite metal hydride of TiFe and TiMn synthesized by mechanical alloying, J. Alloys Compd. 358 (2003) 306-311.[12] K. Ramya, N. Rajalakshmi, P. Sridhar, B. Sivasankar, Electrochemical characteristics of titanium-based hydrogen storage alloys, J. Alloys Compd. 373 (2004) 252-259.[13] H.L. Chu, Y. Zhang, L.X. Sun, S.J. Qiu, Y.N. Qi, F. Xu, H.T. Yuan, Structure and electrochemical properties of composite electrodes synthesized by mechanical milling Nifree TiMn2-based alloy with La-based alloys, J. Alloys Compd. 446-447 (2007) 614-619.[14] G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titaniumdioxide to titanium in molten calcium chloride, Nature 407 (2000) 361-364.[15] E. Gordo, G.Z. Chen, D.J. Fray, Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder inmolten chloride salts, Electrochim. Acta 49 (2004) 2195-2208.[16] K. Jiang, X.H. Hu, M. Ma, D.H. Wang, G.H. Qiu, X.B. Jin, G.Z. Chen, “Perovskitization”—Assisted electrochemical reduction of solid TiO2 in molten CaCl2, Angew. Chem. Int. Ed. 45 (2006) 428-432.[17] Q.S. Song, Q. Xu, X. Kang, J.H. Du, Z.P. Xi, Mechanistic insight of electrochemical reduction of Ta2O5 to tantalum in a eutectic CaCl2-NaCl molten salt, J. Alloys Compd. 490 (2010) 241-246.[18] W. Xiao, X.B. Jin, Y. Deng, D.H.Wang, G.Z. Chen, Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordancewith dynamic three-phase interlines based voltammetry, J. Electroanal. Chem. 639 (2010) 130-140.[19] X.L. Zou, X.G. Lu, C.H. Li, Z.F. Zhou, A direct electrochemical route from oxides to Ti-Si intermetallics, Electrochim. Acta 55 (2010) 5173-5179.[20] Q.J. Zhang, M.L. Qu, L. Wang, L. Dai, Y. Tian, C.X. Cui, Preparation of CoSn alloy by electro-deoxidization in molten salt, Chin. J. Nonferrous Met. 20 (2010) 1578-1582.[21] A.M. Abdelkader, D.J. Fray, Direct electrochemical preparation of Nb-10Hf-1Ti alloy, Electrochim. Acta 55 (2010) 2924-2931.[22] M. Panigrahi, E. Shibata, A. Iizuka, T. Nakamura, Production of Fe-Ti alloy from mixed ilmenite and titanium dioxide by directelectrochemical reduction in molten calcium chloride, Electrochim. Acta 93 (2013) 143-151.[23] G.H. Qiu, D.H. Wang, X.B. Jin, G.Z. Chen, A direct electrochemical route from oxide precursors to the terbium-nickel intermetallic compound TbNi5, Electrochim. Acta 51 (2006) 5785-5793.[24] B.J. Zhao, L.Wang, L. Dai, G.H. Cui, H.Z. Zhou, R.V. Kumar, Direct electrolytic preparation of cerium/nickel hydrogen storage alloy powder in molten salt, J. Alloys Compd. 468 (2009) 379-385.[25] J.J. Peng, H.L. Chen, X.B. Jin, T.Wang, D.H.Wang, G.Z. Chen, Phase-tunable fabrication of consolidated (α + β)-TiZr alloys for biomedical applications through molten salt electrolysis of solid oxides, Chem. Mater. 21 (2009) 5187-5195.[26] J. Han, Y.F. Yang, Z.X. Tan, H.X. Shao, Structure and activation performance of La1-xCexNi5 hydrogen storage alloy, Chin. J. Nonferrous Met. 16 (2006) 1861-1868. |