[1] H. Lin, J.F. Niu, J.L. Xu, Y. Li, Y.H. Pan, Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode:Kinetics, reaction pathways, and energy cost evolution, Electrochim. Acta 97(2013) 167-174.[2] K.D. Brown, J. Kulis, B. Thomson, T.H. Chapman, D.B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Sci. Total Environ. 366(2006) 772-783.[3] H.C. Neu, The crisis in antibiotic resistance, Science 257(1992) 1064-1073.[4] X. Van Doorslaer, J. Dewulf, H. Van Langenhove, K. Demeestere, Fluoroquinolone antibiotics:an emerging class of environmental micropollutants, Sci. Total Environ. 500-501(2014) 250-269.[5] C.C. Jara, D. Fino, V. Specchia, G. Saracco, R. Spinelli, Electrochemical removal of antibiotics from wastewaters, Appl. Catal. B Environ. 70(2007) 479-487.[6] R.Z. Xie, X.Y. Meng, P.Z. Sun, J.F. Niu, W.J. Jiang, L. Bottomley, D.O. Li, Y.S. Chen, J. Crittenden, Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode:Reaction kinetics and mass transfer impact, Appl. Catal. B Environ. 203(2017) 515-525.[7] J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen, M.A. Oturan, Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode, Chemosphere 87(2012) 614-620.[8] N. Oturan, J. Wu, H. Zhang, V.K. Sharma, M.A. Oturan, Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes:Effect of electrode materials, Appl. Catal. B Environ. 140(2013) 92-97.[9] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater:Progress and challenges, Sci. Total Environ. 532(2015) 112-126.[10] D. Zhi, J.L. Qin, H. Zhou, J.B. Wang, S.X. Yang, Removal of tetracycline by electrochemical oxidation using a Ti/SnO2-Sb anode:Characterization, kinetics, and degradation pathway, J. Appl. Electrochem. 47(2017) 1313-1322.[11] A. Gobel, C.S. McArdell, A. Joss, H. Siegrist, W. Giger, Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Sci. Total Environ. 372(2007) 361-371.[12] A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment:Implications for environmental discharge and wastewater recycling, Water Res. 41(2007) 4164-4176.[13] M. Hijosa-Valsero, G. Fink, M.P. Schlusener, R. Sidrach-Cardona, J. Martin-Villacorta, T. Ternes, E. Becares, Removal of antibiotics from urban wastewater by constructed wetland optimization, Chemosphere 83(2011) 713-719.[14] I. Sires, E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies:A review, Environ. Int. 40(2012) 212-229.[15] C. Zhang, Y.H. Jiang, Y.L. Li, Z.X. Hu, L. Zhou, M.H. Zhou, Three-dimensional electrochemical process for wastewater treatment:A general review, Chem. Eng. J. 228(2013) 455-467.[16] L. Zhu, B. Santiago-Schubel, H. Xiao, H. Hollert, S. Kueppers, Electrochemical oxidation of fluoroquinolone antibiotics:Mechanism, residual antibacterial activity and toxicity change, Water Res. 102(2016) 52-62.[17] J. Bengtsson-Palme, R. Hammaren, C. Pal, M. Ostman, B. Bjorlenius, C.F. Flach, J. Fick, E. Kristiansson, M. Tysklind, D.G.J. Larsson, Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics, Sci. Total Environ. 572(2016) 697-712.[18] C.P. Athanasekou, N.G. Moustakas, S. Morales-Torres, L.M. Pastrana-Martinez, J.L. Figueiredob, J.L. Faria, A.M.T. Silva, J.M. Dona-Rodriguez, G.E.M. Romanos, P. Falaras, Ceramic photocatalytic membranes for water filtration under UV and visible light, Appl. Catal. B Environ. 178(2015) 12-19.[19] C.W. Yang, W.C. Hsiao, B.V. Chang, Biodegradation of sulfonamide antibiotics in sludge, Chemosphere 150(2016) 559-565.[20] L. Wang, Z. Qiang, Y. Li, W. Ben, An insight into the removal of fluoroquinolones in activated sludge process:Sorption and biodegradation characteristics, J. Environ. Sci. 56(2017) 263-271.[21] E. Guinea, J.A. Garrido, R.M. Rodriguez, P.L. Cabot, C. Arias, F. Centellas, E. Brillas, Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration, Electrochim. Acta 55(2010) 2101-2115.[22] D. Santos, M.J. Pacheco, A. Gomes, A. Lopes, L. Ciriaco, Preparation of Ti/Pt/SnO2-Sb2O4 electrodes for anodic oxidation of pharmaceutical drugs, J. Appl. Electrochem. 43(2013) 407-416.[23] A. Chrouda, A. Sbartai, A. Baraket, L. Renaud, A. Maaref, N. Jaffrezic-Renault, An aptasensor for ochratoxin A based on grafting of polyethylene glycol on a borondoped diamond microcell, Anal. Biochem. 488(2015) 36-44.[24] E. Brillas, C.A. Martinez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B Environ. 166(2015) 603-643.[25] H.B. Ammar, M.B. Brahim, R. Abdelhedi, Y. Samet, Boron doped diamond sensor for sensitive determination of metronidazole:mechanistic and analytical study by cyclic voltammetry and square wave voltammetry, Mater. Sci. Eng. C Mater. Biol. Appl. 59(2016) 604-610.[26] K. Yang, Y.Y. Liu, J.L. Qiao, Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water, Sep. Purif. Technol. 189(2017) 459-466.[27] G.R.P. Malpass, A.J. Motheo, Galvanostatic oxidation of formaldehyde-methanol solutions on Ti/Ru0.3Ti0.7O2 electrodes using a filter-press cell, J. Appl. Electrochem. 31(2001) 1351-1357.[28] C.A. Martinez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:A general review, Appl. Catal. B Environ. 87(2009) 105-145.[29] D.T. Araujo, M.D. Gomes, R.S. Silva, C.C. de Almeida, C.A. Martinez-Huitle, K.I.B. Eguiluz, G.R. Salazar-Banda, Ternary dimensionally stable anodes composed of RuO2 and IrO2 with CeO2, SnO2, or Sb2O3 for efficient naphthalene and benzene electrochemical removal, J. Appl. Electrochem. 47(2017) 547-561.[30] Q. Zhuo, S. Deng, B. Yang, J. Huang, G. Yu, Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode, Environ. Sci. Technol. 45(2011) 2973-2979.[31] Y. Wang, C.C. Shen, M.M. Zhang, B.T. Zhang, Y.G. Yu, The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode:Influencing factors, reaction pathways and energy demand, Chem. Eng. J. 296(2016) 79-89.[32] S.N. Chai, G.H. Zhao, Y.J. Wang, Y.N. Zhang, Y.B. Wang, Y.F. Jin, X.F. Huang, Fabrication and enhanced electrocatalytic activity of 3D highly ordered macroporous PbO2 electrode for recalcitrant pollutant incineration, Appl. Catal. B Environ. 147(2014) 275-286.[33] X. Chen, G. Chen, P.L. Yue, Stable Ti/IrOx-Sb2O5-SnO2 anode for O2 evolution with low Ir content, J. Phys. Chem. B 105(2001) 4623-4628.[34] X.M. Chen, F.R. Gao, G.H. Chen, Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation, J. Appl. Electrochem. 35(2005) 185-191.[35] H. An, H. Cui, W.Y. Zhang, J.P. Zhai, Y. Qian, X.C. Xie, Q. Li, Fabrication and electrochemical treatment application of a microstructured TiO2-NTs/Sb-SnO2/PbO2 anode in the degradation of CI Reactive Blue 194(RB 194), Chem. Eng. J. 209(2012) 86-93.[36] J.Q. Fan, G.H. Zhao, H.Y. Zhao, S.N. Chai, T.C. Cao, Fabrication and application of mesoporous Sb-doped SnO2 electrode with high specific surface in electrochemical degradation of ketoprofen, Electrochim. Acta 94(2013) 21-29.[37] X.M. Chen, P.D. Yao, D.H. Wang, X.Z. Wu, Antimony and cerium co-doped tin oxide electrodes for pollutant degradation, Chem. Eng. J. 147(2009) 412-415.[38] D. Chianca de Moura, M. Cerro-Lopez, M.A. Quiroz, D. Ribeiro da Silva, C.A. MartinezHuitle, Large disk electrodes of Ti/TiO2-nanotubes/PbO2 for environmental applications, RSC Adv. 5(2015) 31454-31459.[39] Y. Chen, L. Hong, H.M. Xue, W.Q. Han, L.J. Wang, X.Y. Sun, J.S. Li, Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition, J. Electroanal. Chem. 648(2010) 119-127. |