[1] L.M. Fulton, L.R. Lynd, A. Körner, N. Greene, L.R. Tonachel, The need for biofuels as part of a low carbon energy future, biofuels, Bioprod. Biorefining. 9(2015) 476-483. [2] B.E. Dale, J.E. Anderson, R.C. Brown, S. Csonka, V.H. Dale, G. Herwick, R.D. Jackson, N. Jordan, S. Kaffka, K.L. Kline, L.R. Lynd, C. Malmstrom, R.G. Ong, T.L. Richard, C. Taylor, M.Q. Wang, Take a closer look:Biofuels can support environmental, economic and social goals, Environ. Sci. Technol. 48(2014) 7200-7203. [3] A. Demirbaş, Biomass resource facilities and biomass conversion processing for fuels and chemicals, Energy Convers. Manag. 42(2001) 1357-1378. [4] S. Nanda, R. Azargohar, A.K. Dalai, J.A. Kozinski, An assessment on the sustainability of lignocellulosic biomass for biorefining, Renew. Sust. Energ. Rev. 50(2015) 925-941. [5] J.S. Luterbacher, J.M. Rand, D.M. Alonso, J. Han, J.T. Youngquist, C.T. Maravelias, B.F. Pfleger, J.A. Dumesic, Nonenzymatic sugar production from biomass using biomass-derived -valerolactone, Science 343(80) (2014) 277-280. [6] A. Bohre, S. Dutta, B. Saha, M.M. Abu-Omar, Upgrading furfurals to drop-in biofuels:An overview, ACS Sustain. Chem. Eng. 3(2015) 1263-1277. [7] L. Hu, Z. Wu, J. Xu, Y. Sun, L. Lin, S. Liu, Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid, Chem. Eng. J. 244(2014) 137-144. [8] A.S. Nagpure, N. Lucas, S.V. Chilukuri, Efficient preparation of liquid fuel 2,5-dimethylfuran from biomass-derived 5-hydroxymethylfurfural over Ru-NaY catalyst, ACS Sustain. Chem. Eng. 3(2015) 2909-2916. [9] I. Jiménez-Morales, M. Moreno-Recio, J. Santamaría-González, P. MairelesTorres, A. Jiménez-López, Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural, Appl. Catal. B Environ. 154-155(2014) 190-196. [10] H. Kobayashi, A. Fukuoka, Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass, Green Chem. 15(2013) 1740-1763. [11] S. Shen, C. Wang, B. Cai, H. Li, Y. Han, T. Wang, H. Qin, Heterogeneous hydrolysis of cellulose into glucose over phenolic residue-derived solid acid, Fuel. 113(2013) 644-649. [12] M.E. Himmel, S.-Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, T.D. Foust, Biomass recalcitrance:Engineering plants and enzymes for biofuels production, Science 315(2007) 804-807. [13] S. Tabasso, D. Carnaroglio, E. Calcio Gaudino, G. Cravotto, Microwave, ultrasound and ball mill procedures for bio-waste valorisation, Green Chem. 17(2015) 684-693. [14] X. Yuan, S. Liu, G. Feng, Y. Liu, Y. Li, H. Lu, B. Liang, Effects of ball milling on structural changes and hydrolysis of lignocellulosic biomass in liquid hot-water compressed carbon dioxide, Korean J. Chem. Eng. 33(2016) 2134-2141. [15] K. Wu, G. Feng, Y. Liu, C. Liu, X. Zhang, S. Liu, B. Liang, H. Lu, Enhanced hydrolysis of mechanically pretreated cellulose in water/CO2 system, Bioresour. Technol. 261(2018) 28-35. [16] C. Wang, F. Zhou, Z. Yang, W. Wang, F. Yu, Y. Wu, Hydrolysis of cellulose into reducing sugar via hot-compressed ethanol/water mixture, Biomass Bioenergy 42(2012) 143-150. [17] S. Feng, R. Wei, M. Leitch, C.C. Xu, Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture:Roles of ethanol and water, Energy. 155(2018) 234-241. [18] H. Shui, H. Jiao, F. He, T. Shui, X. Wang, H. Zhou, C. Pan, Z. Wang, Z. Lei, S. Ren, S. Kang, C.C. Xu, Coliquefaction of lignite and corn stalk in ethanol-water mixed solvent with addition of formic acid and iron ore catalyst, Energy Fuels 32(2018) 3022-3030. [19] L. Vilcocq, V. Spinola, P. Moniz, L.C. Duarte, F. Carvalheiro, C. Fernandes, P. Castilho, Acid-modified clays as green catalysts for the hydrolysis of hemicellulosic oligosaccharides, Catal. Sci. Technol. 5(2015) 4072-4080. [20] S. Hu, F. Jiang, Y. Lo Hsieh, 1D lignin-based solid acid catalysts for cellulose hydrolysis to glucose and nanocellulose, ACS Sustain. Chem. Eng. 3(2015) 2566-2574. [21] L. Atanda, A. Shrotri, S. Mukundan, Q. Ma, M. Konarova, J. Beltramini, Direct production of 5-hydroxymethylfurfural via catalytic conversion of simple and complex sugars over phosphated TiO2, ChemSusChem 8(2015) 2907-2916. [22] Q. Lu, X. Ning Ye, Z. Bo Zhang, C. Qing Dong, Y. Zhang, Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42-/TiO2-Fe3O4, Bioresour. Technol. 171(2014) 10-15. [23] C. Li, B. Liang, H. Song, J. Qiang, X. Xu, Qing Wang, Preparation of porous rutile titania from ilmenite by mechanical activation and subsequent sulfuric acid leaching, Microporous Mesoporous Mater. 115(2008) 293-300. [24] H. Song, B. Liang, L. Lü, P. Wu, C. Li, Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution, Int. J. Miner. Metall. Mater. 19(2012) 642-650. [25] F. Zeng, D. Luo, Z. Zhang, B. Liang, X. Yuan, L. Fu, Study on the behavior of sulfur in hydrolysis process of titanyl sulfate solution, J. Alloys Compd. 670(2016) 249-257. [26] S. Tang, Y. Zhang, S. Yuan, H. Yue, C. Liu, C. Li, B. Liang, Microwave-assisted seed preparation for producing easily phase-transformed anatase to rutile, RSC Adv. 7(2017) 45607-45614. [27] H. Lu, Y. Liu, H. Zhou, Y. Yang, M. Chen, B. Liang, Production of biodiesel from Jatropha curcas L. oil, Comput. Chem. Eng. 33(2009) 1091-1096. [28] B. Liu, Z. Zhang, Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts, ACS Catal. 6(2016) 326-338. [29] R. Gómez, T. López, E. Ortiz-Islas, J. Navarrete, E. Sánchez, F. Tzompanztzi, X. Bokhimi, Effect of sulfation on the photoactivity of TiO2 sol-gel derived catalysts, J. Mol. Catal. A Chem. 193(2003) 217-226. [30] S. Liu, X. Chen, A visible light response TiO2 photocatalyst realized by cationic Sdoping and its application for phenol degradation, J. Hazard. Mater. 152(2008) 48-55. [31] D. Pang, L. Qiu, R. Zhu, F. Ouyang, Silica supported SO42-/TiO2 for photocatalytic decomposition of acrylonitrile under simulant solar light irradiation, Chem. Eng. J. 270(2015) 590-596. [32] N. Yang, R. Guo, W. Pan, Q. Chen, Q. Wang, C. Lu, The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3, Fuel. 169(2016) 87-92. [33] X. Wang, J.C. Yu, P. Liu, X. Wang, W. Su, X. Fu, Probing of photocatalytic surface sites on SO42-/TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption, J. Photochem. Photobiol. A Chem. 179(2006) 339-347. [34] F. Lin, Z. Jiang, N. Tang, C. Zhang, Z. Chen, T. Liu, B. Dong, Photocatalytic oxidation of thiophene on RuO2/SO42—TiO2:Insights for cocatalyst and solid-acid, Appl. Catal. B Environ. 188(2016) 253-258. [35] L.K. Noda, R.M. De Almeida, L.F.D. Probst, N.S. Gonçalves, Characterization of sulfated TiO2 prepared by the sol-gel method and its catalytic activity in the n-hexane isomerization reaction, J. Mol. Catal. A Chem. 225(2005) 39-46. [36] J.R. Sohn, H.J. Kim, High catalytic activity of NiO·TiO2SO22-for ethylene dimerization, J. Catal. 101(1986) 428-433. [37] B. Tyagi, M.K. Mishra, R.V. Jasra, Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst, J. Mol. Catal. A Chem. 317(2010) 41-45. [38] X. Liu, L. Zhu, T. Zhao, J. Lan, W. Yan, H. Zhang, Synthesis and characterization of sulfonic acid-functionalized SBA-15 for adsorption of biomolecules, Microporous Mesoporous Mater. 142(2011) 614-620. [39] L. Zhou, Z. Liu, M. Shi, S. Du, Y. Su, X. Yang, J. Xu, Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose, Carbohydr. Polym. 98(2013) 146-151. [40] H. Zhao, J.H. Kwak, Y. Wang, J.A. Franz, J.M. White, J.E. Holladay, Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study, Energy Fuels 20(2006) 807-811. [41] L. Peng, L. Lin, J. Zhang, J. Shi, S. Liu, Applied catalysis A:General solid acid catalyzed glucose conversion to ethyl levulinate, Applied Catal. A, Gen. 397(2011) 259-265. [42] W. Deng, M. Liu, X. Tan, Q. Zhang, Y. Wang, Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts, J. Catal. 271(2010) 22-32. [43] J. Shen, C.E. Wyman, Hydrochloric acid-catalyzed levulinic acid formation from cellulose:Data and kinetic model to maximize yields, 58(2012) 236-246. [44] V.V.Ordomsky,V.L.Sushkevich,J.C.Schouten,J.VanDerSchaaf,T.A.Nijhuis,Glucosedehydration to 5-hydroxymethylfurfural over phosphate catalysts, J. Catal. 300(2013) 37-46. [45] I. Ahmed, N.A. Khan, D.K. Mishra, J.S. Lee, J.S. Hwang, S.H. Jhung, Liquid-phase dehydration of sorbitol to isosorbide using sulfated titania as a solid acid catalyst, Chem. Eng. Sci. 93(2013) 91-95. [46] R. Rinaldi, F. Schüth, Acid hydrolysis of cellulose as the entry point into biorefinery schemes, ChemSusChem. 2(2009) 1096-1107. |