[1] Z. Chen, L. L. Chen, M. Jiang, X.Y. Gao, M.L. Huang, Y.X. Li, L.P. Ren, Y. Yang, Z.Z. Yang, Controlled synthesis of CeO2 nanorods and their promotional effect on catalytic activity and aging resistibility for diesel soot oxidation, Appl. Surf Sci. 510 (2020) 145401 [2] X.X. Jia, H. Liu, Y. Zhang, W. Chen, Q. Tong, G.X. Piao, C.Z. Sun, L. Dong, Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide, J. Colloid Interf. Sci. 581 (2021) 427-441 [3] Y.F. Xu, X.D. Wu, Q.W. Lin, J.F. Hu, R. Ran, D. Weng, SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of x at low temperatures, Appl. Catal. A:Gen. 570 (2019) 42-50 [4] P. Wang, J. Yi, W.Y. Gu, P. Luo, L.L. Lei, The influence of xMnyCe/γ-Al2O3 on x catalysts on the properties of x storage and reduction over Pt-Ce-Ba/γ-Al2O3catalysts, Chem. Eng. J. 325 (2017) 700-707 [5] P. Wang, J. Yi, C. Sun, P. Luo, L.L. Lei, Evaluation of H2 Influence on the Evolution Mechanism of xStorage and Reduction over Pt-Ba-Ce/γ-Al2O3Catalysts, Engineering 5 (2019) 568-575 [6] W. Xu, Y.X. Liu, Q. Wang, J. Zhang, J.F. Pan, Removal of nitric oxide from flue gas using sulfate/hydroxyl radicals from activation of oxone with cobalt and high temperature, Environ. Prog. Sustain. Energy, 36 (2017)1013-1021 [7] Y.X. Liu, Y. Wang, Y.S. Yin, J.F. Pan, J. Zhang, Oxidation removal of nitric oxide from flue gas using an ultraviolet light and heat coactivated oxone system, Energ. Fuel, 32 (2018) 1999-2008 [8] Y.X. Liu, Z.Y. Liu, Y. Wang, Y.S. Yin, J.F. Pan, J. Zhang, Q. Wang, Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system. J. Hazard. Mater.342 (2018) 326-334 [9] S.B. Rasmussen, B.L. Abrams, Fundamental chemistry of V-SCR catalysts at elevated temperatures, Catal. Today 297 (2017) 60-63 [10] W. Zhao, S.P. Dou, K. Zhang, L.C. Wu, Q. Wang, D.H. Shang, Q. Zhong, Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of x, Chem. Eng. J. 364 (2019) 401-409 [11] W. Zhao, K. Zhang, L.C. Wu, Q. Wang, D.H. Shang, Q. Zhong, Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of x with NH3, J. Colloid Interf. Sci. 581 (2021) 76-83 [12] M.D. Amiridis, R.V. Duevel, I.E. Wachs, The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia, Appl. Catal. B:Environ. 20 (1999) 111-122 [13] J.H. Li, J.J. Chen, R. Ke, C.K. Luo, J.M. Hao, Effects of precursors on the surface Mn species and the activities for NO reduction over Mx/TiO2 catalysts, Catal. Commu. 8 (2007) 1896-1900 [14] C.M. Chen, Y. Cao, S.T. Liu, J.M. Chen, W.B. Jia, Review on the latest developments in modified vanadium-titanium-based SCR catalysts, Chin. J. Catal. 39 (2018) 1347-1365 [15] Z.R. Ma, X.D. Wu, Y. Feng, Z.C. Si, D. Weng, L. Shi, Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst, Prog. Nat. Sci.:Mater. Int. 25 (2015) 342-352 [16] W. Zhao, Q. Zhong, T.J. Zhang, Y.X. Pan, Characterization study on the promoting effect of F-doping V2O5/TiO2 SCR catalysts, RSC Adv. 2 (2012) 7906-7914 [17] R. Yang, H.F. Huang, Y.J. Chen, X.X. Zhang, H.F. Lu, Performance of Cr-doped vanadia/titania catalysts for low-temperature selective catalytic reduction of x with NH3, Chin. J. Catal. 36 (2015) 1256-1262 [18] C.H. Niu, B.R.Wang, Y. Xing, W. Su, C. He, L. Xiao, Y.R. Xu, S.Q. Zhao, Y.H. Cheng, J.W. Shi, Thulium modified Mx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia, J. Clean Prod. 290 (2021) 125858 [19] L. Chen, J.H. Li, M.F. Ge, Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of x by NH3, J. Phys. Chem. C 113 (2009) 21177-21184 [20] P.W. Huo, X. Gao, Z.Y. Lu, X.L. Liu, Y.Y. Luo, W.N. Xing, J.Q. Li, Y.S. Yan, Photocatalytic degradation of antibiotics in water using metal ion@TiO2/HNTs under visible light, Desal. Water Treat. 52 (2014) 6985-6995 [21] W.L. Zhang, J.Q. Li, Z.Y. Lu, Y.Y. Luo, F. Chen, P.W. Huo, J.M. Pan, Y.S. Yan, Performance of removal of salicylic acid residues from aqueous solution based on the magnetic TiO2 nanocomposites, Desal. Water Treat. 52 (2014) 6598-6610 [22] G. Wang, Y. Qi, D.W. Zhang, J. Bao, L. Xu, Y. Zhao, J.X. Qiu, S.Q. Yuan, H.M. Li, Rational design of porous TiO2@N-doped carbon for high rate lithium-ion batteries, Energy Technol. 7 (2019) 1800911 [23] W.C. Cui, J.P. Shang, H.Y. Bai, J. Hu, D.B. Xu, J.R. Ding, W.Q. Fan, W.D. Shi, In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode, Chem. Eng. J. 388 (2020) 124206 [24] S. Djerad, L. Tifouti, M. Crocoll, W. Weisweiler, Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts, J. Mol. Catal. A:Chem. 208 (2004) 257-265 [25] X.W. Li, Y.H. Chao, L.L. Chen, W. Chen, J. Luo, C. Wang, P.W. Wu, H.M. Li, W.S. Zhu, Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources, Chem. Eng. J. 392 (2020) 123731 [26] W.K. Wang, J.J. Chen, M. Gao, Y.X. Huang, X. Zhang, H.Q. Yu, Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio, Appl. Catal. B:Environ. 195 (2016) 69-76 [27] F.S. Tang, B.L. Xu, H.H. Shi, J.H. Qiu, Y.L. Fan, The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3, Appl. Catal. B:Environ. 94 (2010) 71-76 [28] C.J. Oluigbo, M. Xie, N. Ullah, S. Yang, S.S. Yang, W.T. Zhao, M.M. Zhang, X.M. Lv, Y.G. Xu, J.M. Xie, Novel one-step synthesis of nickel encapsulated carbon nanotubes as efficient electrocatalyst for hydrogen evolution reaction, Int. J. Hydrog. Energy 44 (2018) 2685-2693 [29] A. Zaleska, E. Grabowska, J.W. Sobczak, M. Gazda, J. Hupka, Photocatalytic activity of boron-modified TiO2 under visible light:The effect of boron content, calcination temperature and TiO2 matrix, Appl. Catal. B:Environ. 89 (2009) 469-475 [30] R. Zhang, Q. Zhong, W. Zhao, L.M. Yu, H.X. Qu, Promotional effect of fluorine on the selective catalytic reduction of NO with NH3 over CeO2-TiO2 catalyst at low temperature, Appl. Surf. Sci. 289 (2014) 237-244 [31] C.H. Niu, Y. Wang, D.W. Ren, L. Xiao, R.B. Duan, B.R. Wang, X.B. Wang, Y.R. Xu, Z.H. Li, J.W. Shi, The deposition of VWOX on the CuCeOy microflower for the selective catalytic reduction of x with NH3 at low temperatures, J. Colloid Interf. Sci, 561(2020) 808-817 [32] Q. Wang, C. Zhou, X.H. Yan, J.J. Wang, D.F. Wang, X.X. Yuan, X.N. Cheng, TiO2 nanoparticles modified MoO3 nanobelts as electrode materials with superior performances for supercapacitors, Energy Technol. 6 (2018) 2367-2373 [33] S.D. Zhao, J.R. Chen, Y.F. Liu, Y. Jiang, C.G. Jiang, Z.L. Yin, Y.G. Xiao, S.S. Cao, Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability, Chem. Eng. J. 367 (2019) 249-259 [34] A.J. Wang, L.X. Cheng, X.L. Shen, X.D. Chen, W.H. Zhu, W. Zhao, C.C. Lv, Porphyrin coordination polymer/Co1-xS composite electrocatalyst for efficient oxygen evolution reaction, Chem. Eng. J. 400 (2020) 125975 [35] S.J. Liao, D.G. Huang, D.H. Yu, Y.L. Su, G.Q. Yuan, Preparation and characterization of ZnO/TiO2, SO42-/ZnO/TiO2 photocatalyst and their photocatalysis, J. Photochem. Photobiol. A. 168 (2004) 7-13 [36] C. Wang, H.P. Li, X.J. Zhang, Y. Qiu, S.H. Xun, W.S. Yang, H.M. Li, Z.G. Chen, W.S. Zhu, Atomic-layered α-V2O5 nanosheets obtained via fast gas-driven exfoliation for superior aerobic oxidative desulfurization, Energ. Fuel. 34 (2020) 2612-2616 [37] C. Wang, Y. Qiu, H.Y. Wu, W.S. Yang, Q. Zhu, Z.G. Chen, S.H. Xun, W.S. Zhu, H.M. Li, Construction of 2D-2D V2O5/BNNS nanocomposites for improved aerobic oxidative desulfurization performance, Fuel 270 (2020) 117498 [38] C. Wang, Z.G. Chen, X.Y. Yao, Y.H. Chao, S.H. Xun, J. Xiong, L. Fan, W.H. Zhu, H.M. Li, Decavanadates anchored into micropores of graphene-like boron nitride:Efficient heterogeneous catalysts for aerobic oxidative desulfurization, Fuel 230 (2018) 104-112 [39] S.L. Zhang, Q. Zhong, W. Zhao, Y.T. Li, Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature, Chem. Eng. J. 253 (2014) 207-216 [40] S.L. Zhang, H.Y. Li, Q. Zhong, Promotional effect of F-doped V2O5-WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature, Appl. Catal. A:Gen. 435-436 (2012) 156-162 [41] P.R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, P.G. Smirniotis, Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3, Appl. Catal. B:Environ. 76 (2007) 123-134 [42] L.Q. Jing, Z.L. Xu, X.J. Sun, J. Shang, W.M. Cai, The surface properties and photocatalytic activities of ZnO ultrafine particles, Appl. Surf. Sci. 180 (2001) 308-314 [43] D.M. Chen, D. Yang, Q. Wang, Z.Y. Jiang, Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles, Ind. Eng. Chem. Res. 45 (2006) 4110-4116 [44] S.C. Liu, X. Zhang, Y. Ma, X. Bai, X.P. Chen, J.X. Liu, J.M. Pan, Immobilization of boronic acid and vinyl-functionalized multiwalled carbon nanotubes in hybrid hydrogel via light-triggered chemical polymerization for aqueous phase molecular recognition, Chem. Eng. J. 355 (2019) 740-751 [45] Y.H. Lu, Z.F. Zhou, P. Sit, Y.G. Shen, K.Y. Li, H. Chen, X-Ray photoelectron spectroscopy characterization of reactively sputtered Ti-B-N thin films, Surf. Coat. Technol. 187 (2004) 98-105 [46] P.W. Wu, Y.C. Wu, L.L. Chen, J. He, M.Q. Hua, F.X. Zhu, X.Z. Chu, J. Xiong, M.Q. He, W.S. Zhu, J.M. Li, Boosting aerobic oxidative desulfurization performance in fuel oil via strong metal-edge interactions between Pt and h-BN, Chem. Eng. J. 380 (2020) 122526 [47] M.C. Paganini, L. Dall'Acqua, E. Giamello, L. Lietti, P. Forzatti, G. Busca, An EPR Study of the Surface Chemistry of the V2O5-WO3/TiO2 Catalyst:Redox Behaviour and State of V(IV), J. Catal 166 (1997) 195-205 [48] Y. Wang, Y.X. Liu, Y. Liu, Elimination of nitric oxide using new Fenton process based on synergistic catalysis:Optimization and mechanism, Chem. Eng. J. 372 (2019) 92-98 [49] I. Song, S. Youn, H. Lee, S.G. Lee, S.J. Cho, D.H. Kim, Effects of microporous TiO2 support on the catalytic and structural properties of V2O5/microporous TiO2 for the selective catalytic reduction of NO by NH3, Appl. Catal. B:Environ. 210 (2017) 421-431 [50] M.W. Xue, J.Z. Ge, H.L. Zhang, J.Y. Shen, Surface acidic and redox properties of V-Ag-Ni-O catalysts for the selective oxidation of toluene to benzaldehyde, Appl. Catal. A:Gen. 330 (2007) 117-126 [51] J.J. Zhu, D.K. Xiao, J. Li, X.G. Yang, Perovskite-Like Mixed Oxides (LaSrMn1-xNixO4+δ, 0 ≤ x ≤ 1) as Catalyst for Catalytic NO Decomposition:TPD and TPR Studies, Catal. Lett. 129 (2009) 240-246 [52] P. Wang, D. Yu, L.D. Zhang, Y.L. Ren, M.M. Jin, L.L. Lei, Evolution mechanism of x in NH3-SCR reaction over Fe-ZSM-5 catalyst:Species-performance relationships, Appl. Catal. A:Gen. 607 (2020) 117806 [53] Y. Jiang, L. Yang, G.T. Liang, S.J. Liu, W.Q. Gao, Z.D. Yang, X.W. Wang, R.Y. Lin, X.B. Zhu, The poisoning effect of PbO on CeO2-MoO3/TiO2 catalyst for selective catalytic reduction of NO with NH3, Mol. Catal. 486 (2020) 110877 [54] S.S.R. Putluru, L. Schill, A. Godiksen, R. Poreddy, S. Mossin, A.D. Jensen, R. Fehrmann, Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. B:Environ. 183 (2016) 282-290 [55] L.C. Wu, Q. Wang, W. Zhao, E.K. Payne, Study of Fe-doped V2O5/TiO2 catalyst for an enhanced NH3-SCR in diesel exhaust aftertreatment, Chem. Pap. 72 (2018) 1981-1989 [56] W. Li, R.T. Guo, S.X. Wang, W.G. Pan, Q.L. Chen, M.Y. Li, P. Sun, S.M. Liu, The enhanced Zn resistance of Mn/TiO2 catalyst for NH3-SCR reaction by the modification with Nb, Fuel Process. Technol. 154 (2016) 235-242 [57] W. Zhao, S.P. Dou, Q. Zhong, L.C. Wu, Q. Wang, A.J. Wang, The role of Lewis and Brønsted acid sites in NO reduction with NH3 on sulfur modified TiO2-supported V2O5 catalyst, Russian J. Phys. Chem. A 91 (2017) 2489-2494 [58] Z.Y. Fan, J.W. Shi, C.H. Niu, B.R. Wang, C. He, Y.H. Cheng. The insight into the role of Al2O3 in promoting the SO2 tolerance of Mx for low-temperature selective catalytic reduction of x with NH3. Chem. Eng. J. 398 (2020) 125572 [59] Y.P. Zhang, W.Q. Guo, L.F. Wang, M. Song, L.J. Yang, K. Shen, H.T. Xu, C.C. Zhou, Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx, Chin. J. Catal. 36 (2015) 1701-1710 |