[1] L.C. Creemer, H.A. Kirst, T.R. Shryock, J.B. Campbell, A.G. Webb, Synthesis, antimicrobial activity and in vivo fluorine NMR of a hexafluorinated derivative of tilmicosin, J. Antibiot. (Tokyo) 48(7) (1995) 671–675. [2] K.R. Wan, T. Lin, J. Chen, L. Li, Y.K. Zeng, L.H. Zeng, Z.X. Zhang, The preparation method and application of the catalyst used for continuous preparation of 3,5-dimethyl piperidine, CN Pat., 201611126557.5(2016). [3] R.C. Beier, L.C. Creemer, R.L. Ziprin, D.J. Nisbet, Production and characterization of monoclonal antibodies against the antibiotic tilmicosin, J. Agric. Food Chem. 53(25) (2005) 9679–9688. [4] S.I. Zones, Y. Nakagawa, S.T. Evans, G.S. Lee, ZEOLITE SSZ-39, US Pat., 5958370A (1999). [5] H. Xu, J. Zhang, Q.M. Wu, W. Chen, C. Lei, Q.Y. Zhu, S.C. Han, J.H. Fei, A.M. Zheng, L.F. Zhu, X.J. Meng, S. Maurer, D. Dai, A.N. Parvulescu, U. Müller, F.S. Xiao, Direct synthesis of aluminosilicate SSZ-39 zeolite using colloidal silica as a starting source, ACS Appl. Mater. Interfaces 11(26) (2019) 23112–23117. [6] F.G. Sales, L.C.A. Maranhão, N.M.L. Filho, C.A.M. Abreu, Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin, Chem. Eng. Sci. 62(18–20) (2007) 5386–5391. [7] S. Machefer, L. Falk, F. de Panthou, Intensification principle of a new threephase catalytic slurry reactor. Part I: Performance characterisation, Chem. Eng. Process. Process Intensif. 70(2013) 277–288. [8] C. Jiménez-González, P. Poechlauer, Q.B. Broxterman, B.S. Yang, D.A. Ende, J. Baird, C. Bertsch, R.E. Hannah, P. Dell’Orco, H. Noorman, S. Yee, R. Reintjens, A. Wells, V. Massonneau, J. Manley, Key green engineering research areas for sustainable manufacturing: A perspective from pharmaceutical and fine chemicals manufacturers, Org. Process Res. Dev. 15(4) (2011) 900–911. [9] D. Heitmann, Continuous and intensified laboratory process development at clariant, Chem. Eng. Technol. 39(11) (2016) 1993–1995. [10] S. Lomel, L. Falk, J.M. Commenge, J.L. Houzelot, K. Ramdani, The microreactor: A systematic and efficient tool for the transition from batch to continuous process?, Chem Eng. Res. Des. 84(5) (2006) 363–369. [11] K. Plumb, Continuous processing in the pharmaceutical industry: Changing the mind set, Chem. Eng. Res. Des. 83(6) (2005) 730–738. [12] J.G. Boelhouwer, H.W. Piepers, B.A.H. Drinkenburg, Advantages of forced nonsteady operated trickle-bed reactors, Chem. Eng. Technol. 25(6) (2002) 647. [13] M.V. Rajashekharam, R. Jaganathan, R.V. Chaudhari, A trickle-bed reactor model for hydrogenation of 2, 4 dinitrotoluene: Experimental verification, Chem. Eng. Sci. 53(4) (1998) 787–805. [14] J.K. Jeon, J.H. Yim, Y.K. Park, C9-aldehyde hydrogenation over nickel/kieselguhr catalysts in trickle bed reactor, Chem. Eng. J. 140(1–3) (2008) 555–561. [15] A.J. Sederman, M.D. Mantle, C.P. Dunckley, Z.Y. Huang, L.F. Gladden, In situ MRI study of 1-octene isomerisation and hydrogenation within a trickle-bed reactor, Catal. Lett. 103(1) (2005) 1–8. [16] J. Roininen, V. Alopaeus, S. Toppinen, J. Aittamaa, Modeling and simulation of an industrial trickle-bed reactor for benzene hydrogenation: Model validation against plant data, Ind. Eng. Chem. Res. 48(4) (2009) 1866–1872. [17] D. Durante, T. Kilpiö, P. Suominen, V.S. Herrera, J. Wärnå, P. Canu, T. Salmi, Modeling and simulation of a small-scale trickle bed reactor for sugar hydrogenation, Comput. Chem. Eng. 66(2014) 22–35. [18] T.A. Nijhuis, F.M. Dautzenberg, J.A. Moulijn, Modeling of monolithic and trickle-bed reactors for the hydrogenation of styrene, Chem. Eng. Sci. 58(7) (2003) 1113–1124. [19] S. Machefer, L. Falk, F. de Panthou, Intensification principle of a new threephase catalytic slurry reactor. Part II: Eco-efficiency and techno-economic performances, Chem. Eng. Process. Process Intensif. 70(2013) 267–276. [20] F.S. Mederos, J. Ancheyta, J.W. Chen, Review on criteria to ensure ideal behaviors in trickle-bed reactors, Appl. Catal. A: Gen. 355(1–2) (2009) 1–19. [21] C.N. Satterfield, Trickle-bed reactors, AIChE J. 21(2) (1975) 209–228. [22] T.W. Kim, J. Oh, Y.-W. Suh, Hydrogenation of 2-benzylpyridine over aluminasupported Ru catalysts: Use of Ru3(CO)12 as a Ru precursor, Appl. Catal. A: Gen. 547(2017) 183–190. [23] C. Zhou, A Study on the Catalytic Hydrogenation of 3,5-Dimethylpyridine Master’s Thesis, Huazhong University of Science & Technology, Wuhan, 2008. [24] F. Xue, The preparation of highly dispersed Ru catalyst and the study of the catalytic behavior on hydrogenation of N-heterocycles Master’s Thesis, Sichuan University, Chengdu, 2006. [25] F. Xue, Q. Lin, C.F. Yang, X.J. Li, H. Chen, Hydrogenation of pyridine and its derivatives over supported nanometer noble metal catalysts, Chin. J. Catal. 27(2006) 921–926. [26] N.Q. Budwine, N.L. Churissa, P.G. Walmart, Separation of cis-3,5-dimethylpiperidine from geometric isomers of cis-3,5-dimethylpiperidine, CN Pat., 200410031697.7(2004). [27] Z.M. Du, C.Y. Zhou, W.F. Ji, J.S. Jiang, G.P. Yu, L.J. Ji, Preparation of cis-trans mixed isomer 3,5-dimethylpiperidine, CN Pat., 200610088375.3(2006). [28] F. Gerald, L. Old, Filter-purifier cartyidge having separable elements, US Pat., 4138339(1979). [29] T. Lin, J. Chen, B.L. Zhang, K.R. Wan, Y.K. Zeng, L.H. Zeng, W. Gao, Z.X. Zhang, A catalyst for hydrogenation of pyridine compounds and its application, CN Pat., 201711364538.0(2017). [30] C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marín, Changes in surface chemistry of activated carbons by wet oxidation, Carbon 38(14) (2000) 1995–2001. [31] T. Lin, K.R. Wan, J. Chen, Z.X. Zhang, Y.K. Zeng, L.H. Zeng, W. Gao, An online device used for evaluating the fixed bed catalyst performance, CN Pat., 201520609359.9(2015). [32] G. Peng, M. Steib, F. Gramm, C. Ludwig, F. Vogel, Synthesis factors affecting the catalytic performance and stability of Ru/C catalysts for supercritical water gasification, Catal. Sci. Technol. 4(9) (2014) 3329–3339. [33] R.M. Mironenko, O.B. Belskaya, T.I. Gulyaeva, A.I. Nizovskii, A.V. Kalinkin, V.I. Bukhtiyarov, A.V. Lavrenov, V.A. Likholobov, Effect of the nature of carbon support on the formation of active sites in Pd/C and Ru/C catalysts for hydrogenation of furfural, Catal. Today 249(2015) 145–152. [34] I. Rossetti, L. Forni, Effect of Ru loading and of Ru precursor in Ru/C catalysts for ammonia synthesis, Appl. Catal. A: Gen. 282(1–2) (2005) 315–320. [35] V.A. Sifontes Herrera, D.E. Rivero Mendoza, A.-R. Leino, J.-P. Mikkola, A. Zolotukhin, K. Eränen, T. Salmi, Sugar hydrogenation in continuous reactors: From catalyst particles towards structured catalysts, Chem. Eng. Process.-Process. Intensif. 109(2016) 1–10. [36] A. Müller, G. Hilpmann, S. Haase, R. Lange, Continuous hydrogenation of L-arabinose and D-galactose in a mini packed-bed reactor, Chem. Eng. Technol. 40(11) (2017) 2113–2122. [37] C.N. Satterfield, A.A. Pelossof, T.K. Sherwood, Mass transfer limitations in a trickle-bed reactor, AIChE J. 15(2) (1969) 226–234. [38] J. Nie, H. Liu, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts, J. Catal. 316(2014) 57–66. [39] T. Fovanna, S. Campisi, A. Villa, A. Kambolis, G. Peng, D. Rentsch, O. Kröcher, M. Nachtegaal, D. Ferri, Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural, RSC Adv. 10(19) (2020) 11507–11516. [40] F. Su, L. Lv, F.Y. Lee, T. Liu, A.I. Cooper, X.S. Zhao, Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics, J. Am. Chem. Soc. 129(46) (2007) 14213–14223. [41] P. Veerakumar, N. Dhenadhayalan, K.C. Lin, S.B. Liu, Highly stable ruthenium nanoparticles on 3D mesoporous carbon: An excellent opportunity for reduction reactions, J. Mater. Chem. A 3(46) (2015) 23448–23457. [42] L. Wu, J. Song, B. Zhou, T. Wu, T. Jiang, B. Han, Preparation of Ru/graphene using glucose as carbon source and hydrogenation of levulinic acid to cvalerolactone, Chem. Asian J. 11(19) (2016) 2792–2796. [43] María.L. Bosko, N. Ferreira, A. Catena, M. Sergio Moreno, J.F. Múnera, L. Cornaglia, Catalytic behavior of Ru nanoparticles supported on carbon fibers for the ethanol steam reforming reaction, Catal. Commun. 114(2018) 19–23. [44] A. Bjelić, M. Grilc, M. Huš, B. Likozar, Hydrogenation and hydrodeoxygenation of aromatic lignin monomers over Cu/C, Ni/C, Pd/C, Pt/C, Rh/C and Ru/C catalysts: Mechanisms, reaction micro-kinetic modelling and quantitative structure-activity relationships, Chem. Eng. J. 359(2019) 305–320. [45] C.L. Xu, M. Ming, Q. Wang, C. Yang, G.Y. Fan, Y. Wang, D.J. Gao, J. Bi, Y. Zhang, Facile synthesis of effective Ru nanoparticles on carbon by adsorption-low temperature pyrolysis strategy for hydrogen evolution, J. Mater. Chem. A 6(29) (2018) 14380–14386. [46] M.G. Hosseini, P. Zardari, Electrocatalysis of oxygen reduction on multi-walled carbon nanotube supported Ru-based catalysts in alkaline media, Int. J. Hydrog. Energy 41(21) (2016) 8803–8818. [47] A. Jafari, N. Saadatjou, S. Sahebdelfar, Influence of chemical treatments of activated carbon support on the performance and deactivation behavior of promoted Ru catalyst in ammonia synthesis, Int. J. Hydrog. Energy 40(9) (2015) 3659–3671. [48] H. Zhao, S. Chen, M. Guo, D. Zhou, Z. Shen, W. Wang, B. Feng, B. Jiang, Catalytic Dehydrochlorination of 1,2-Dichloroethane into Vinyl Chloride over NitrogenDoped Activated Carbon, ACS Omega 4(1) (2019) 2081–2089. [49] Z. Wei, X. Li, J. Deng, J. Wang, H. Li, Y. Wang, Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon, Mol. Catal. 448(2018) 100–107. [50] M. Balaraju, V. Rekha, B.L.A.P. Devi, R.B.N. Prasad, P.S.S. Prasad, N. Lingaiah, Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol, Appl. Catal. A: Gen. 384(1–2) (2010) 107–114. [51] H. Kobayashi, H. Matsuhashi, T. Komanoya, K. Hara, A. Fukuoka, Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts, Chem. Commun. (Camb.) 47(8) (2011) 2366–2368. [52] Y. Wang, Z.M. Rong, Y. Wang, J.P. Qu, Ruthenium nanoparticles loaded on functionalized graphene for liquid-phase hydrogenation of fine chemicals: Comparison with carbon nanotube, J. Catal. 333(2016) 8–16. [53] J. Li, H.Y. Zhang, M. Cai, L.F. Li, Y.Q. Li, R. Zhao, J.L. Zhang, Enhanced catalytic performance of activated carbon-supported ru-based catalysts for acetylene hydrochlorination by azole ligands, Appl. Catal. A-Gen. 592(2020) 117431. [54] X. Liu, G. Lan, P. Su, L. Qian, T. Ramirez Reina, L. Wang, Y. Li, J. Liu, Highly stable Ru nanoparticles incorporated in mesoporous carbon catalysts for production of c-valerolactone, Catal. Today 351(2020) 75–82. [55] B.C. Man, H.Y. Zhang, J.L. Zhang, X. Li, N. Xu, H. Dai, M.Y. Zhu, B. Dai, Oxidation modification of Ru-based catalyst for acetylene hydrochlorination, RSC Adv. 7(38) (2017) 23742–23750. [56] S.S. Guo, K.Y. Liew, J.L. Li, Catalytic activity of ruthenium nanoparticles supported on carbon nanotubes for hydrogenation of soybean oil, J. Am. Oil Chem. Soc. 86(12) (2009) 1141–1147. [57] B. Lin, Y. Guo, C. Cao, J. Ni, J. Lin, L. Jiang, Carbon support surface effects in the catalytic performance of Ba-promoted Ru catalyst for ammonia synthesis, Catal. Today 316(2018) 230–236. [58] Y. Wang, J. Wang, G. Han, C. Du, Y. Sun, L. Du, M. An, G. Yin, Y. Gao, Y. Song, Superior catalytic performance and CO tolerance of Ru@Pt/C-TiO2 electrocatalyst toward methanol oxidation reaction, Appl. Surf. Sci. 473(2019) 943–950. |