[1] K.F. Jensen, Flow chemistry-Microreaction technology comes of age, AIChE Journal. 63 (2017) 858-869. https://doi.org/10.1002/aic.15642. [2] I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A.J. deMello, M.V. Kovalenko, Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping, Nano Lett. 16 (2016) 1869-1877. https://doi.org/10.1021/acs.nanolett.5b04981. [3] K. Matula, F. Rivello, W.T.S. Huck, Single-Cell Analysis Using Droplet Microfluidics, Advanced Biosystems. 4 (2020) 1900188. https://doi.org/10.1002/adbi.201900188. [4] R.H. Abou-Saleh, F.J. Armistead, D.V.B. Batchelor, B.R.G. Johnson, S.A. Peyman, S.D. Evans, Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles, Review of Scientific Instruments. 92 (2021) 074105. https://doi.org/10.1063/5.0040213. [5] M. Abolhasani, A. Gunther, E. Kumacheva, Microfluidic Studies of Carbon Dioxide, Angewandte Chemie International Edition. 53 (2014) 7992-8002. https://doi.org/10.1002/anie.201403719. [6] S. Battat, D.A. Weitz, G.M. Whitesides, Nonlinear Phenomena in Microfluidics, Chem. Rev. 122 (2022) 6921-6937. https://doi.org/10.1021/acs.chemrev.1c00985. [7] L. Sheng, Y. Chang, J. Wang, J. Deng, G. Luo, Hydrodynamics of gas-liquid microfluidics: A review, Chemical Engineering Science. 285 (2024) 119563. https://doi.org/10.1016/j.ces.2023.119563. [8] C. Shen, Q. Zheng, M. Shang, L. Zha, Y. Su, Using deep learning to recognize liquid-liquid flow patterns in microchannels, AIChE Journal. 66 (2020) e16260. https://doi.org/10.1002/aic.16260. [9] S. Zhang, X. Liang, X. Huang, K. Wang, T. Qiu, Precise and fast microdroplet size distribution measurement using deep learning, Chem Eng Sci. 247 (2022) 116926. https://doi.org/10.1016/j.ces.2021.116926. [10] K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017: pp. 2980-2988. https://doi.org/10.1109/ICCV.2017.322. [11] S. Zhang, H. Li, K. Wang, T. Qiu, Accelerating intelligent microfluidic image processing with transfer deep learning: A microchannel droplet/bubble breakup case study, Sep Purif Technol. 315 (2023) 123703. https://doi.org/10.1016/j.seppur.2023.123703. [12] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei, Language models are few-shot learners, in: Proceedings of the 34th International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, 2020: pp. 1877-1901. [13] A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever, Learning Transferable Visual Models From Natural Language Supervision, in: Proceedings of the 38th International Conference on Machine Learning, PMLR, 2021: pp. 8748-8763. https://proceedings.mlr.press/v139/radford21a.html (accessed May 10, 2025). [14] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A.C. Berg, W.-Y. Lo, P. Dollar, R. Girshick, Segment Anything, in: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, Paris, France, 2023: pp. 3992-4003. https://doi.org/10.1109/ICCV51070.2023.00371. [15] A. Carraro, M. Sozzi, F. Marinello, The Segment Anything Model (SAM) for accelerating the smart farming revolution, Smart Agricultural Technology. 6 (2023) 100367. https://doi.org/10.1016/j.atech.2023.100367. [16] S. Khan, M. Naseer, M. Hayat, S.W. Zamir, F.S. Khan, M. Shah, Transformers in Vision: A Survey, ACM Comput. Surv. 54 (2022) 1-41. https://doi.org/10.1145/3505244. [17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, in: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021. https://openreview.net/forum?id=YicbFdNTTy (accessed May 10, 2025). [18] M. Tancik, P.P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J.T. Barron, R. Ng, Fourier features let networks learn high frequency functions in low dimensional domains, in: H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, H.-T. Lin (Eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Virtual, 2020. https://proceedings.neurips.cc/paper/2020/hash/55053683268957697aa39fba6f231c68-Abstract.html. (Accessed 10 May 2025). [19] R. Jain, H.-H. Nagel, On the Analysis of Accumulative Difference Pictures from Image Sequences of Real World Scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-1 (1979) 206-214. https://doi.org/10.1109/TPAMI.1979.4766907. [20] J.S. Kulchandani, K.J. Dangarwala, Moving object detection: Review of recent research trends, in: 2015 International Conference on Pervasive Computing (ICPC), 2015: pp. 1-5. https://doi.org/10.1109/PERVASIVE.2015.7087138. [21] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in: Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1, MIT Press, Cambridge, MA, USA, 2015: pp. 91-99. [22] F. Bolelli, S. Allegretti, L. Baraldi, C. Grana, Spaghetti Labeling: Directed Acyclic Graphs for Block-Based Connected Components Labeling, IEEE Transactions on Image Processing. 29 (2020) 1999-2012. https://doi.org/10.1109/TIP.2019.2946979. [23] T. Zhang, S. Wei, S. Ji, E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation, in: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: pp. 4433-4442. https://doi.org/10.1109/CVPR52688.2022.00440. [24] W. Xu, S. Zhang, K. Wang, T. Qiu, An Efficient Approach for Droplet Coalescence Videos Processing based on Instance Segmentation and Multi-Object Tracking Algorithms, in: Computer Aided Chemical Engineering, Elsevier, 2024: pp. 3001-3006. https://doi.org/10.1016/B978-0-443-28824-1.50501-9. [25] B. Cheng, I. Misra, A.G. Schwing, A. Kirillov, R. Girdhar, Masked-attention Mask Transformer for Universal Image Segmentation, in: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, New Orleans, LA, USA, 2022: pp. 1280-1289. https://doi.org/10.1109/CVPR52688.2022.00135. [26] F. Li, H. Zhang, H. Xu, S. Liu, L. Zhang, L.M. Ni, H.-Y. Shum, Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation, in: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Vancouver, BC, Canada, 2023: pp. 3041-3050. https://doi.org/10.1109/CVPR52729.2023.00297. [27] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: pp. 770-778. https://doi.org/10.1109/CVPR.2016.90. [28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge, Int J Comput Vis. 115 (2015) 211-252. https://doi.org/10.1007/s11263-015-0816-y. [29] C. Zhang, D. Han, Y. Qiao, J.U. Kim, S.-H. Bae, S. Lee, C.S. Hong, Faster segment anything: towards lightweight SAM for mobile applications. 2023. http://arxiv.org/abs/2306.14289. (Accessed 17 June 2024). [30] L. Sheng, Y. Chang, J. Deng, G. Luo, Hydrodynamics and mass transfer performance of gas-liquid microflow in viscous liquids, Chem Eng J. 454 (2023) 140407. https://doi.org/10.1016/j.cej.2022.140407. |