1 Tan, L.L., Li, C.Z., “Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part . Effects of reactor configuration on the determined yields of HCN and NH 3 during pyrolysis”, Fuel, 79, 1883-1889 (2000). 2 Kelemen, S.R., Gorbaty, M.L., Kwiatek, P.J., Fletcher, T.H., Watt, M., Solum, M.S., Pugmire, R.J, “Nitrogen transformations in coal during pyrolysis”, Energ. Fuel, 12, 159-173 (1998). 3 Solomon, P.R., Colket, M.B., “Evolution of fuel nitrogen in coal devolatilization”, Fuel, 57, 749-755 (1978). 4 Mackie, J.C., Colket, M.B., Nelson, P.F., Esler, M., “Shock tube pyrolysis of pyrrole and kinetic modeling”, Int. J. Chem. Kinet., 23, 733-760 (1991). 5 Lifshitz, A., Tamburu, C., Suslensky, A., “Isomerization and decomposition of pyrrole at elevated temperatures. Studies with a single-pulse shock tube”, J. Phys. Chem., 93, 5802-5808 (1989). 6 Dubnikova, F., lifshitz, A., “Isomerization of pyrrole. Quantum chemical calculations and kinetic modeling”, J. Phys. Chem. A, 102, 10880-10888 (1998). 7 Zhai, L., Zhou, X.F., Liu, R.F., “A theoretical study of pyrolysis mechanisms of pyrrole”, J. Phys. Chem. A, 103, 3917-3922 (1999). 8 Martoprawiro, M., Bacskay, G.B., Mackie, J.C., “Ab initio quantum chemical and kinetic modeling study of the pyrolysis kinetics of pyrrole”, J. Phys. Chem. A, 103, 3923-3934 (1999). 9 Bacskay, G.B., Martoprawiro, M., Mackie, J.C., “The thermal decomposition of pyrrole:An ab initio quantum chemical study of the potential energy surface associated with the hydrogen cyanide plus propyne channel”, Chem. Phys. Lett., 300, 321-330 (1999). 10 Mackie, J.C., Colket, M.B, Nelson, P.F., “Shock tube pyrolysis of pyridine”, J. Phys. Chem., 94, 4099-4106 (1990). 11 Memon, H.U.R., Bartle, K.D., Taylor, J.M., Williams, A., “The shock tube pyrolysis of pyridine”, Int. J. Energ. Res., 24, 1141-1159 (2000). 12 Liu, R.F., Huang, T.T.S., Tittle, J., Xia, D.H., “A theoretical investigation of the decomposition mechanism of pyridyl radicals”, J. Phys. Chem. A, 104, 8368-8374 (2000). 13 Ninomiya, Y., Dong, Z.B., Suzuki, Y., Koketsu, J., “Theoretical study on the thermal decomposition of pyridine”, Fuel, 79, 449-457 (2000). 14 Laskin, A., Lifshitz, A., “Isomerization and decomposition of indole. Experimental results and kinetic modeling”, J. Phys. Chem. A, 101, 7787-7801 (1997). 15 Zhou, X.F., Liu, R.F., “A density functional theory study of the pyrolysis mechanisms of indole”, J. Mol. Struct. Theochem., 461/462, 569-579 (1999). 16 Patterson, J.M., Issidorides, C.H., Papadopoulos, E.P., Smith, Jr. W.T., “The thermal interconversion of quinoline and isoquinoline”, Tetrahedron. Lett., 15, 1247-1250 (1970). 17 Bruinsma, O.S.L., Tromp, P.J.J., De Sauvage Nolting, H.J.J., Moulijn, J.A., “Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor 2. Heterocyclic compounds, their benzo and dienzo derivatives”, Fuel, 67, 334-340 (1988). 18 Axworthy, A.E., Dayan, V.H., Martin, G.B., “Reactions of fuel-nitrogen compounds under conditions of inert pyrolysis”, Fuel, 57, 29-35 (1978). 19 Laskin, A., Lifshitz, A., “Thermal decomposition of quinoline and isoquinoline. The role of 1-indene imine radical”, J. Phys. Chem. A, 102, 928-946 (1998). 20 Winkler, J.K., Karow, W., Rademacher, P., “Gas phase pyrolysis of heterocyclic compounds (3) Flow pyrolysis and annulation reaction of some nitrogen heterocycles. A product oriented study”, ARKIVOC, 1 (4), 576-602 (2000). 21 Delley, B., “From molecules to solids with the Dmol 3 approach”, J. Chem. Phys., 113 (18), 7756-7764 (2000). 22 Perdew, J.P., Chevary, J.A., Vosko, S.H., Fiolhais, C., “Atoms, molecules, solids and surfaces:Application of the generalized gradient approximation for exchange and correlation”, Phys. Rev. B, 46 (11), 6671-6687 (1992). 23 Lide, D.R., Handbook of Chemistry and Physics, 82nd edition, CRC Press, New York, 9-40 (2001-2002). 24 Zhao, L.J., Ling, L.X., Zhang, R.G., Liu, X.F., Wang, B.J., “Theoretical study on pyrolysis mechanism of O-containing model compound anisole in coal”, J. Chem. Ind. Eng. (China), 59 (8), 2095-2102 (2008). (in Chinese) 25 Zhang, R.G., Huang, W., Wang, B.J., “Theoretical calculation for interaction of CO2 with H and CH3 in synthesis of acetic acid from CH4 and CO2 ”, Chin. J. Catal. (China), 28 (7), 641-645 (2007). (in Chinese) |