1 Tejero-Ezpeleta, M.P., Buchholz, S., Mleczko, L., “Optimization of reaction conditions in a fluidized-bed for silane pyrolysis”, Can. J. Chem. Eng., 82, 520-529 (2004). 2 White, C.M., Ege, P., Ydstie, B.E., “Size distribution modeling for fluidized bed solar-grade silicon production”, Powder Technol., 163, 51-58 (2006). 3 Wei, M., Patadia, S., Kammen, D.M., “Putting renewables and energy efficiency to work:How many jobs can the clean energy industry generate in the USA”, Energy Policy, 38, 919-931 (2010). 4 Thomson, E., “China’s nuclear energy in light of the disaster in Japan”, Eurasian Geography and Economics, 52, 464-482 (2011). 5 Guenther, C., O’Brien, T., Syamlal, M., “A numerical model of silane pyrolysis in a gas-solids fluidized bed”, In:the International Conference on Multiphase Flow, SRP, New Orleans 1-12 (2001). 6 Mara, W., Herring, R., Hunt, L., Handbook of Semiconductor Silicon Technology, Noyes Publ., New Jersey (1990). 7 Wakamatsu, S., Oda, H., “Development of solar grade silicon manufacturing technology by vapor-to-liquid deposition method”, Nippon Kagakkai Koen Yokoshu, 85, 510-519 (2005). 8 Mauk, M., “Silicon solar cells:Physical metallurgy principles”, Journal of the Minerals, Metals and Materials Society, 55, 38-42 (2003). 9 Odden, J.O., Egeberg, P.K., Kjekshus, A., “From monosilane to crystalline silicon, Part I:Decomposition of monosilane at 690-830 K and initial pressures 0.1-6.6 MPa in a free-space reactor”, Sol. Energy Mater. Sol. Cells, 86, 165-176 (2005). 10 Iya, S., “Development of the silane process for the production of low-cost polysilicon”, In:JPL Proceedings of the Flat-Plate Solar Array Project Workshop on Low-Cost Polysilicon for Terrestrial Photovoltaic Solar-Cell Applications, California, USA, 135-145 (1986). 11 Furusawa, T., Kojima, T., Hiroha, H., “Chemical vapor deposition and homogeneous nucleation in monosilane pyrolysis within interparticle spaces—application of fines formation analysis to fluidized bed CVD”, Chem. Eng. Sci., 43, 2037-2042 (1988). 12 Hsu, G., Rohatgi, N., Houseman, J., “Silicon particle growth in a fluidized-bed reactor”, AIChE J., 33, 784-791 (1987). 13 Rohatgi, N.K., Silicon Production in a Fluidized Bed Reactor:Final Report, Jet Propulsion Lab., Pasadena, CA, USA (1986). 14 Lai, S., Dudukovic, M.P., Ramachandran, P.A., “Chemical vapor deposition and homogeneous nucleation in fluidized bed reactors:silicon from silane”, Chem. Eng. Sci., 41, 633-641 (1986). 15 Caussat, B., Hemati, M., Couderc, J.P., “Silicon deposition from silane or disilane in a fluidized bed-Part I:Experimental study”, Chem. Eng. Sci., 50, 3615-3624 (1995). 16 Caussat, B., Hemati, M., Couderc, J.P., “Silicon deposition from silane or disilane in a fluidized bed-Part II:Theoretical analysis and modeling”, Chem. Eng. Sci., 50, 3625-3635 (1995). 17 Reuge, N., Cadoret, L., Caussat, B., “Multifluid Eulerian modelling of a silicon fluidized bed chemical vapor deposition process:Analysis of various kinetic models”, Chem. Eng. J., 148, 506-516 (2009). 18 Cadoret, L., Reuge, N., Pannala, S., Syamlal, M., Coufort, C., Caussat, B., “Silicon CVD on powders in fluidized bed:Experimental and multifluid Eulerian modelling study”, Surf. Coat. Technol., 201, 8919-8923 (2007). 19 Reuge, N., Cadoret, L., Coufort-Saudejaud, C., Pannala, S., Syamlal, M., Caussat, B., “Multifluid Eulerian modeling of dense gas-solids fluidized bed hydrodynamics:Influence of the dissipation parameters”, Chem. Eng. Sci., 63, 5540-5551 (2008). 20 Cadoret, L., Reuge, N., Pannala, S., Syamlal, M., Rossignol, C., Dexpert-Ghys, J., Coufort, C., Caussat, B., “Silicon chemical vapor deposition on macro and submicron powders in a fluidized bed”, Powder Technol., 190, 185-191 (2009). 21 Pi a, J., Bucalá, V., Schbib, N.S., Ege, P., De Lasa, H.I., “Modeling a silicon CVD spouted bed pilot plant reactor”, International Journal of Chemical Reactor Engineering, 4, 9-28 (2006). 22 Setty, H., Yaws, C., Martin, B., Wangler, D., “Method of operating a quartz fluidized bed reactor for the production of silicon”, US Pat., 3963838 (1976). 23 Parkinson, G., “Polysi icon business shines brightly”, Chem. Eng. Prog., 104, 8-11 (2008). 24 Rinaldi, A., Crippa, D., “CVD technologies for silicon:A quick survey”, Semiconductors and Semimetals, 72, 1-50 (2001) 25 Murthy, T., Miyamoto, N., Shimbo, M., Nishizawa, J., “Gas-phase nucleation during the thermal decomposition of silane in hydrogen”, J. Cryst. Growth, 33, 1-7 (1976). 26 Hsu, G., Hogle, R., Rohatgi, N., Morrison, A., “Fines in fluidized bed silane pyrolysis”, J. Electrochem. Soc., 131, 660-668 (1984). 27 Kimura, T., Kojima, T., “Numerical-model of a fluidized-bed reactor for polycrystalline silicon production-estimation of CVD and fines formation”, Le Journal de Physique IV, 2, 103-110 (1991). 28 Kommu, S., Khomami, B., Biswas, P., “Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part II:Application to CVD reactors”, Chem. Eng. Sci., 59, 359-371 (2004). 29 Kojima, T., Kimura, T., Matsukata, M., “Development of numerical model for reactions in fluidized bed grid zone-application to chemical vapor deposition of polycrystalline silicon by monosilane pyrolysis”, Chem. Eng. Sci., 45, 2527-2534 (1990). 30 Heady, R., Cahn, J., “Experimental test of classical nucleation theory in a liquid\liquid miscibility gap system”, The Journal of Chemical Physics, 58, 896-910 (1973). 31 Prakash, A., Bapat, A., Zachariah, M., “A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems”, Aerosol Sci. Technol., 37, 892-898 (2003). 32 Kruis, F.E., Schoonman, J., Scarlett, B., “Homogeneous nucleation of silicon”, J. Aerosol Sci, 25, 1291-1304 (1994). 33 Nijhawan, S., McMurry, P.H., Swihart, M.T., Suh, S.M., Girshick, S.L., Campbell, S.A., Brockmann, J.E., “An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane”, J. Aerosol Sci, 34, 691-711 (2003). 34 Breiland, W., Coltrin, M., Ho, P., “Comparisons between a gas‐ phase model of silane chemical vapor deposition and laser-diagnostic measurements”, J. Appl. Phys., 59, 3267-3273 (1986). 35 Breiland, W.G., Ho, P., Coltrin, M.E., “Gas/phase silicon atoms in silane chemical vapor deposition:Laser/excited fluorescence measurements and comparisons with model predictions”, J. Appl. Phys., 60, 1505-1513 (1986). 36 Ho, P., Coltrin, M., Breiland, W., “Laser-induced fluorescence measurements and kinetic analysis of Si atom formation in a rotating disk chemical vapor deposition reactor”, The Journal of Physical Chemistry, 98, 10138-10147 (1994). 37 Yuuki, A., Matsui, Y., Tachibana, K., “A numerical study on gaseous reactions in silane pyrolysis”, Japanese Journal of Applied Physics, 26, 747-752 (1987). 38 Swihart, M.T., Nijhawan, S., Mahajan, M.R., Suh, S.M., Girshick, S.L., “Modeling the nucleation kinetics and aerosol dynamics of particle formation during CVD of silicon from silane”, J. Aerosol Sci, 29, S79-S80 (1998). 39 Giunta, C.J., McCurdy, R.J., ChappleSokol, J.D., Gordon, R.G., “Gas phase kinetics in the atmospheric pressure chemical vapor deposition of silicon from silane and disilane”, J. Appl. Phys., 67, 1062-1075 (1990). 40 Onischuk, A.A., Strunin, V.P., Ushakova, M.A., Samoilova, R.I., Panfilov, V.N., “Analysis of hydrogen and paramagnetic defects in a Si:H aerosol particles. Resulting from thermal decomposition of silane”, Physica Status Solidi (b), 193, 25-38 (1996). 41 Onischuk, A.A., Strunin, V.P., Ushakova, M.A., Panfilov, V.N., “Analysis of hydrogen in aerosol particles of a Si:H forming during the pyrolysis of silane”, Physica Status Solidi (b), 186, 43-55 (1994). 42 Onischuk, A.A., Strunin, V.P., Samoilova, R.I., Nosov, A.V., Ushakova, M.A., Panfilov, V.N., “Chemical composition and bond structure of aerosol particles of amorphous hydrogenated silicon forming from thermal decomposition of silane”, J Aerosol Sci, 28, 1425-1441 (1997). 43 Onischuk, A.A., Strunin, V.P., Ushakova, M.A., Panfilov, V.N., “On the pathways of aerosol formation by thermal decomposition of silane”, J Aerosol Sci, 28, 207-222 (1997). 44 Onischuk, A.A., Strunin, V.P., Ushakova, M.A., Panfilov, V.N.,“Studying of silane thermal decomposition mechanism”, Int. J. Chem. Kinet., 30, 99-110 (1998). 45 Kremer, D.M., Davis, R.W., Moore, E.F., Ehrman, S.H., “A numerical investigation of the effects of gas-phase particle formation on silicon film deposition from silane”, J. Cryst. Growth, 247, 333-356 (2003). 46 Kremer, D.M., Davis, R.W., Moore, E.F., Maslar, J.E., Burgess, J.D.R., Ehrman, S.H., “An investigation of particle dynamics in a rotating disk chemical vapor deposition reactor”, J. Electrochem. Soc., 150, G127-G139 (2003). 47 Vepřřek, S., Schopper, K., Ambacher, O., Rieger, W., Vepřek\Heijman, M., “Mechanism of cluster formation in a clean silane discharge”, J. Electrochem. Soc., 140, 1935-1942 (1993). 48 Swihart, M.T., Girshick, S.L., “Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane”, The Journal of Physical Chemistry B, 103, 64-76 (1999). 49 Girshick, S., Swihart, M., Suh, S., Mahajan, M., Nijhawan, S., “Numerical modeling of gas-phase nucleation and particle growth during chemical vapor deposition of silicon”, Journal Electrochemical Society, 147, 2303-2311 (2000). 50 Talukdar, S.S., Swihart, M.T., “Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis:a comparison of three solution methods”, J. Aerosol Sci, 35, 889-908 (2004). 51 Prasad, R., van Slooten, R., “Annular heated fluidized bed reactor”, US Pat., 5165908 (1992). 52 van Slooten, R., Prasad, R., “Annular heated fluidized bed reactor”, US Pat., 4992245 (1991). 53 Yoon, P., Song, Y., “Fluidized bed reactor with microwave heating system for preparing high-purity polycrystalline silicon”, US Pat., 4786477 (1988). 54 Kim, H.Y., Song, Y.M., Jeon, Y.Y., Kwon, D.H., Lee, K.M., Lee, J.S., Park, D.S., “Heating of fluidized bed reactor by microwaves”, US Pat., 5374413 (1994). 55 Rogers, L.C., Polysilicon Preparation, Noyes Publications, New Jersey (1990). 56 Rinaldi, A., Crippa, D., “CVD technologies for silicon:A quick survey”, Semiconductors and Semimetals, 72, 1-50 (2001). 57 Setty, H., Yaws, C., Martin, B., Wangler, D., “Method of operating a quartz fluidized bed reactor for the production of silicon”, US Pat., 3963838 (1976). 58 Padovani, F., “Silicon seed production process”, US Pat., 4207360 (1980). 59 Padovani, F.A., Miller, M.B., Moore, J.A., Fowler, J.H., June, M.N., Matthews, J.D., Morton, T., Stotko, N.A., Palmer, L.B., “Process of refining impure silicon to produce purified electronic grade silicon”, US Pat., 4092446 (1978). 60 Kim, H.Y., koo Yoon, K., Park, Y.K., Choi, W.C., “High-pressure fluidized bed reactor for preparing granular polycrystalline silicon”, EP Pat., 1984297 (2007). 61 Kim, H.Y., Song, Y.M., Jeon, J.Y., Kwon, D.H., Lee, K.M., Lee, J.S., Park, D.S., “Fluidized bed reactor heated by microwaves”, US Pat., 5382412 (1995). 62 Doelling, M.K., “Microwave assisted fluidized bed processor”, US Pat., 4967486 (1990). 63 Poong, Y., Yongmok, S., “Method of preparing a high-purity polycrystalline silicon using a microwave heating system in a fluidized bed reactor”, US Pat., 4900411 (1990). 64 Blackwood, D., Zhang, Y., “The effect of etching temperature on the photoluminescence emitted from, and the morphology of, p-type porous silicon”, Electrochim. Acta, 48, 623-630 (2003). 65 Filtvedt, W., Javidi, M., Holt, A., Melaaen, M., Marstein, E., Tathgar, H., Ramachandran, P., “Development of fluidized bed reactors for silicon production”, Sol. Energy Mater. Sol. Cells, 94, 1980-1995 (2010). |