[1] C. Burda, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (4) (2005) 1025-1102. [2] D.Y. Guo, A. Ito, T. Goto, R. Tu, C.B. Wang, Q. Shen, L.M. Zhang, Effect of laser power on microstructure and dielectric properties of BaTi5O11 films prepared by laser chemical vapor deposition method, J. Mater. Sci. 23 (11) (2012) 1961-1964. [3] H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc. 131 (11) (2009) 4078-4083. [4] N. Kumada, T. Nakatani, Y. Yonesaki, T. Takei, N. Kinomura, Preparation of new zirconium phosphates by solvothermal reaction, J. Mater. Sci. 43 (7) (2008) 2206-2212. [5] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Onedimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15 (5) (2003) 353-389. [6] C.L. Hsin, W.F. Lee, C.T. Huang, C.W. Huang, W.W. Wu, L.J. Chen, Growth of CuInSe2 and In2Se3/CuInSe2 nano-heterostructures through solid state reactions, Nano Lett. 11 (10) (2011) 4348-4351. [7] L. Martín-Arias, A. Castro, M. Algueró, Ferroelectric phases and relaxor states in the novel lead-free (1-x)Bi1/2K1/2TiO3 -xBiScO3 system (0 ≤ x ≤ 0.3), J. Mater. Sci. 47 (8) (2012) 3729-3740. [8] J.R. González-Velasco, R. Ferret, R. López-Fonseca, M.A. Gutiérrez-Ortiz, Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solidstate reaction, Powder Technol. 153 (1) (2005) 34-42. [9] P.R. Santhanam, E.L. Dreizin, Predicting conditions for scaled-up manufacturing of materials prepared by ball milling, Powder Technol. 221 (2012) 403-411. [10] Z.Q. Li, L.G. Qiu, T. Xu, Y.Wu,W.Wang, Z.Y.Wu, X. Jiang, Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method, Mater. Lett. 63 (1) (2009) 78-80. [11] M.E. Brown, C.A.R. Phillpotts, Non-isothermal kinetics, J. Chem. Educ. 55 (9) (1978) 556-560. [12] A. Perejón, P.E. Sánchez-Jiménez, J.M. Criado, L.A. Pérez-Maqueda, Kinetic analysis of complex solid-state reactions. A new deconvolution procedure, J. Phys. Chem. B 115 (8) (2011) 1780-1791. [13] S. Maitra, A. Choudhury, H.S. Das, Ms.J. Pramanik, Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition, J. Mater. Sci. 40 (18) (2005) 4749-4751. [14] S. Vyazovkin, A unified approach to kinetic processing of nonisothermal data, In. J. Chem. Kinet. 28 (2) (1996) 95-101. [15] A. Khawam, D.R. Flanagan, Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics, J. Phys. Chem. B 109 (20) (2005) 10073-10080. [16] F.J. Gotor, J.M. Criado, J. Malek, N. Koga, Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments, J. Phys. Chem. A 104 (46) (2000) 10777-10782. [17] J. Sempere, R. Nomen, R. Serra, J. Soravilla, The NPK method: an innovative approach for kinetic analysis of data from thermal analysis and calorimetry, Thermochim. Acta 388 (1) (2002) 407-414. [18] P.E. Sánchez-Jiménez, L.A. Pérez-Maqueda, A. Perejón, J.M. Criado, Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway, Polym. Degrad. Stab. 94 (11) (2009) 2079-2085. [19] L.A. Pérez-Maqueda, J.M. Criado, J. Málek, Combined kinetic analysis for crystallization kinetics of non-crystalline solids, J. Non-Cryst. Solids 320 (1-3) (2003) 84-91. [20] J.R. Opfermann, E. Kaisersberger, H.J. Flammersheim, Model-free analysis of thermoanalytical data-advantages and limitations, Thermochim. Acta 391 (1-2) (2002) 119-127. [21] S.B.Wang, V. Slovak, B.S. Haynes, Kinetic studies of graphon and coal-char reaction with NO and O2: direct non-linear regression from TG curves, Fuel Process. Technol. 86 (6) (2005) 651-660. [22] H. Geßwein, J.R. Binder, Thermokinetic study of the oxidation of ZrAl3 powders, Thermochim. Acta 444 (1) (2006) 6-12. [23] P. Budrugeac, E. Segal, Application of isoconversional and multivariate non-linear regression methods for evaluation of the degradation mechanism and kinetic parameters of an epoxy resin, Polym. Degrad. Stab. 93 (6) (2008) 1073-1080. [24] K. Akihiko, S. Tadayoshi, Photoluminescence of layered alkali-metal titanates (A2TinO2n + 1, A = Na, K) at 300 and 77 K, J. Mater. Chem. 3 (1993) 1081-1082. [25] A. Kudo, E. Kaneko, Photochemical host-guest interaction in Tb3+ and Eu3+ ionexchanged K2 -xHxTi2O5 layered oxides, Chem. Commun. 4 (1997) 349-350. [26] M. He, X.H. Lu, X. Feng, L. Yu, Z.H. Yang, A simple approach to mesoporous fibrous titania from potassium dititanate, Chem. Commun. 19 (2004) 2202-2203. [27] N.Z. Bao, X. Feng, Z.H. Yang, L. Shen, X.H. Lu, Highly efficient liquid-phase photooxidation of an azo dye methyl orange over novel nanostructured porous titanatebased fiber of self-supported radially aligned H2Ti8O17·1.5H2O nanorods, Environ. Sci. Technol. 38 (9) (2004) 2729-2736. [28] W.E. Garner, Chemistry of the Solid State, Academic Press, New York, 1955. [29] J.M. Cai, R.H. Liu, Kinetic analysis of solid-state reactions: a general empirical kinetic model, Ind. Eng. Chem. Res. 48 (6) (2009) 3249-3253. [30] H.J. Hong, G.H. Guo, K.L. Zhang, Kinetics and mechanismof non-isothermal dehydration of nickel acetate tetrahydrate in air, J. Anal. Appl. Pyrol. 77 (2) (2006) 111-115. [31] S.B. Vadim Mamleev, M. Le Bras, S. Duquesne, J. Šesták, Modelling of nonisothermal kinetics in thermogravimetry, Phys. Chem. Chem. Phys. 2 (2000) 4708-4716. [32] Z.J. Li, X.Q. Shen, X. Feng, P.Y.Wang, Z.S.Wu, Non-isothermal kinetics studies on the thermal decomposition of zinc hydroxide carbonate, Thermochim. Acta 438 (1-2) (2005) 102-106. [33] H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci. Polym. Symp. 6 (1) (1964) 183-195. [34] P. Budrugeac, E. Segal, Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid-gas reactions, In. J. Chem. Kinet. 33 (10) (2001) 564-573. [35] M.F. Zhang, J.H. Hong, L.J. Yuan, Y.X. Zhang, K.L. Zhang, Kinetics of dehydration of FePO4·4H2O in air, Chin. J. Inorg. Chem. 25 (6) (2009) 1022-1025 (In Chinese). [36] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME 135 (1939) 416-442. [37] M. Avrami, Kinetics of phase change. I. General theory, J. Chem. Phys. 7 (1939) 1103-1112. [38] M. Avrami, Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei, J. Chem. Phys. 8 (1940) 221-224. [39] M. Avrami, Kinetics of phase change. Ⅲ. Granulation, phase change, and microstructure, J. Chem. Phys. 9 (1941) 177-184. [40] E.G. Prout, F.C. Tompkins, The thermal decomposition of potassium permanganate, Trans. Faraday Soc. 40 (1944) 488-498. [41] B.V. Erofe'ev, Generalized equation of chemical kinetics and its application in reactions involving solids, C. R. Dokl. Acad. Sci. I'URSS 52 (1946) 511-514. [42] M. Zheng, L.H. Shen, X.Q. Feng, J. Xiao, Kinetic model for parallel reactions of CaSO4 with CO in chemical-looping combustion, Ind. Eng. Chem. Res. 50 (9) (2011) 5414-5427. [43] S. Mathew, N. Eisenreich, W. Engel, Thermal analysis using X-ray diffractometry for the investigation of the solid state reaction of ammonium nitrate and copper oxide, Thermochim. Acta 269-270 (1995) 475-489. [44] A. de Lucas, L. Rodriguez, P. Sánchez, J. Lobato, Effect of the particle size of starting materials on the synthesis of crystalline layered sodium silicate for use in detergents, Ind. Eng. Chem. Res. 40 (12) (2001) 2580-2585. [45] C. Liu, M. He, X.H. Lu, Q.T. Zhang, Z.Z. Xu, Reaction and crystallization mechanism of potassium dititanate fibers synthesized by low-temperature calcination, Cryst. Growth Des. 5 (4) (2005) 1399-1404. [46] W.H. Rhodes, Agglomerate and particle size effects on sintering yttria-stabilized zirconia, J. Am. Ceram. Soc. 64 (1) (1981) 19-22. [47] M.T. Buscaglia, M. Bassoli, V. Buscaglia, R. Vormberg, Solid-state synthesis of nanocrystalline BaTiO3: reaction kinetics and powder properties, J. Am. Ceram. Soc. 91 (9) (2008) 2862-2869. [48] H. Klug, L. Alexander, X-ray Diffraction Procedure for Polycrystallite and Amorphous Materials, 2nd ed. John Wiley and Sons, New York, 1974. |