[1] C. Ponce de León, A. Frías-Ferrer, J. González-García, D.A. Szánto, F.C. Walsh, Redox flow cells for energy conversion, J. Power Sources 160(2006) 716-732.
[2] A. Hazza, D. Pletcher, R. Wills, A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii), Phys. Chem. Chem. Phys. 6(2004) 1773-1778.
[3] J. Cheng, L. Zhang, Y.S. Yang, Y.H. Wen, G.P. Cao, X.D.Wang, Preliminary study of single flow zinc-nickel battery, Electrochem. Commun. 9(2007) 2639-2642.
[4] T.I. Evans, R.E. White, A review of mathematical modeling of the zinc/bromine flow cell and battery, J. Electrochem. Soc. 134(1987) 2725-2733.
[5] D. Loftus, J. Roberts, R.Weaver, S. Leach, L. Nanis, Diffusivity in zinc chloride-potassium chloride electrolyte, J. Electrochem. Soc. 130(1983) 332-334.
[6] G. Nikiforidis, L. Berlouis, D. Hall, D. Hodgson, Evaluation of carbon composite materials for the negative electrode in the zinc-cerium redox flow cell, J. Power Sources 206(2012) 497-503.
[7] F. Yu,M.Y. Zhu, X.G. Wang, G.Wang, P.R. Qi, D. Chen, B. Dai, Clean energy and energy storage research-The 2nd international conference on clean energy sciences, Energy Storage Sci. Technol. 3(2014) 457-470.
[8] A. Hazza, D. Pletcher, R.Wills, A novel flow battery-A lead acid battery based on an electrolyte with soluble lead(II), J. Power Sources 149(2005) 103-111.
[9] C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: The rechargeable zinc ion battery, Angew. Chem. 51(2012) 933-935.
[10] D. Xu, B. Li, C.Wei, Y.B. He, H. Du, X. Chu, X. Qin, Q.H. Yang, F. Kang, Preparation and characterization of MnO2/acid-treated CNT Nanocomposites for energy storage with zinc ions, Electrochim. Acta 133(2014) 254-261.
[11] C. Wei, C. Xu, B. Li, H. Du, F. Kang, Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage, J. Phys. Chem. Solids 73(2012) 1487-1491.
[12] M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V.Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode, J. Power Sources 288(2015) 320-327.
[13] J.X. Yu, H.X. Yang, X.P. Ai, X.M. Zhu, A study of calcium zincate as negative electrode materials for secondary batteries, J. Power Sources 103(2001) 93-97.
[14] S. Tong, T. Zhang, C.A. Ma, Oxygen evolution behavior of PTFE-F-PbO2 electrode in H2SO4 solution, Chin. J. Chem. Eng. 16(2008) 885-889.
[15] X. Hong, R. Zhang, S. Tong, C.A. Ma, Preparation of TiPTFE-F-PbO2 electrode with a long life from the sulfamic acid bath and its application in organic degradation, Chin. J. Chem. Eng. 19(2011) 1033-1038.
[16] J. Pan, Y. Wen, J. Cheng, J. Pan, Z. Bai, Y. Yang, Zinc deposition and dissolution in sulfuric acid onto a graphite-resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteries, J. Appl. Electrochem. 43(2013) 541-551.
[17] P.K. Leung, Q. Xu, T.S. Zhao, High-potential zinc-lead dioxide rechargeable cells, Electrochim. Acta 79(2012) 117-125.
[18] B.C. Tripathy, S.C. Das, P. Singh, G.T. Hefter, V.N. Misra, Zinc electrowinning from acidic sulphate solutions part IV: Effects of perfluorocarboxylic acids, J. Electroanal. Chem. 565(2004) 49-56.
[19] C. Cachet, R. Wiart, Influence of a perfluorinated surfactant on the mechanism of zinc deposition in acidic electrolytes, Electrochim. Acta 44(1999) 4743-4751.
[20] S. Han, B. Qiu, Z.Wei, Y. Xia, Z. Liu, Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material, J. Power Sources 268(2014) 683-691.
[21] Q.B. Zhang, Y. Hua, Effect of Mn2+ ions on the electrodeposition of zinc from acidic sulphate solutions, Hydrometallurgy 99(2009) 249-254.
[22] A.E. Alvarez, D.R. Salinas, Nucleation and growth of Zn on HOPG in the presence of gelatine as additive, J. Electroanal. Chem. 566(2004) 393-400. |