[1] A. Barhoum, A.S.H. Makhlouf, Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization, Elsevier, 2018. [2] L.G. Cesar, C. Yang, Z. Lu, Y. Ren, G. Zhang, J.T. Miller, Identification of a Pt3Co surface intermetallic alloy in Pt-Co propane dehydrogenation catalysts, ACS Catal. 9 (2019) 5231-5244. [3] G. Yun, Z. Hassan, J. Lee, J. Kim, N.S. Lee, N.H. Kim, K. Baek, I. Hwang, C.G. Park, K. Kim, Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications, Angew. Chem., Int. Ed. 53 (2014) 6414-6418. [4] B. Yang, Y. Chen, J. Shi, Nanocatalytic medicine, Adv. Mater. 31 (2019) 1901778. [5] T.W. Hansen, A.T. DeLaRiva, S.R. Challa, A.K. Datye, Sintering of catalytic nanoparticles: Particle migration or ostwald ripening? Acc. Chem. Res. 46 (2013) 1720-1730. [6] G. Prieto,M. Shakeri, K.P. de Jong, P.E. de Jongh, Quantitative relationship between support porosity and the stability ofpore-confinedmetal nanoparticles studied on CuZnO/SiO2 methanol synthesis catalysts, ACS Nano 8 (2014) 2522-2531. [7] P. Wynblatt, N.A. Gjostein, Supported metal crystallites, Prog. Solid State Chem. 9 (1975) 21-58. [8] M. Haruta, M. Daté, Advances in the catalysis of Au nanoparticles, Appl. Catal., A 222 (2001) 427-437. [9] J. Wang, A.H. Lu, M. Li, W. Zhang, Y.S. Chen, D.X. Tian, W.C. Li, Thin porous alumina sheets as supports for stabilizing gold nanoparticles, ACS Nano 7 (2013) 4902-4910. [10] P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13 (1976) 2287-2298. [11] S.L. Lai, J.R.A. Carlsson, L.H. Allen, Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements, Appl. Phys. Lett. 72 (1998) 1098-1100. [12] K.F. Peters, J.B. Cohen, Y.W. Chung, Melting of Pb nanocrystals, Phys. Rev. B 57 (1998) 13430-13438. [13] G.L. Allen, R.A. Bayles, W.W. Gile, W.A. Jesser, Small particle melting of pure metals, Thin Solid Films 144 (1986) 297-308. [14] V.P. Skripov, V.P. Koverda, V.N. Skokov, Size effect on melting of small particles, Physica Status Solidi (A) 66 (1981) 109-118. [15] E.H. Kim, B.J. Lee, Size dependency of melting point of crystalline nano particles and nano wires: A thermodynamic modeling, Met. Mater. Int. 15 (2009) 531-537. [16] W. Luo, W. Hu, Gibbs free energy, surface stress and melting point of nanoparticle, Physica B 425 (2013) 90-94. [17] J. Gibbs, The Scientific Papers of J. Willard Gibbs, new dover Edition, in: Thermodynamics, vol. 1. Dover Publications, Inc., Constable and Co, New York, London. Reprinted 1961. [18] J. Thomson, Theoretical considerations on the effect of pressure in lowering the freezing point of water, Trans. R. Soc. 5 (1849) 575-580. [19] J. Thomson, On crystallization and liquefaction, as influenced by stresses tending to change the form in the crystals, Proc. R. Soc. 11 (1862) 473-481. [20] L. Gunawan, G.P. Johari, Specific heat, melting, crystallization, and oxidation of zinc nanoparticles and their transmission electron microscopy studies, J. Phys. Chem. C 112 (2008) 20159-20166. [21] C.L. Jackson, G.B. McKenna, The melting behavior of organic materials confined in porous solids, J. Chem. Phys. 93 (1990) 9002-9011. [22] J. Lee, T. Tanaka, J. Lee, H. Mori, Effect of substrates on the melting temperature of gold nanoparticles, Comput. Coupling Phase Diagrams Thermochem. 31 (2007) 105-111. [23] F. Ding, A. Rosén, S. Curtarolo, K. Bolton, Modeling the melting of supported clusters, Appl. Phys. Lett. 88 (2006) 133110. [24] S.C. Hendy, A Thermodynamic model for the melting of supported metal nanoparticles, Nanotechnology 18 (2007) 175703. [25] A. Safaei, Shape, structural, and energetic effects on the cohesive energy and melting point of nanocrystals, J. Phys. Chem. C 114 (2010) 13482-13496. [26] Y. Shibuta, T. Suzuki, Effect of wettability on phase transition in substratesupported Bcc-metal nanoparticles: A molecular dynamics study, Chem. Phys. Lett. 486 (2010) 137-143. [27] W. Luo, W. Hu, K. Su, K. Li, Gibbs free energy approach to the prediction of melting points of isolated, supported, and embedded nanoparticles, J. Appl. Phys. 112 (2012) 014302. [28] W. Luo, K. Su, K. Li, G. Liao, N. Hu, M. Jia, Substrate effect on the melting temperature of gold nanoparticles, J. Chem. Phys. 136 (2012) 234704. [29] B. Coasne, J. Czwartos, M. Sliwinska-Bartkowiak, K.E. Gubbins, Freezing of mixtures confined in silica nanopores: Experiment and molecular simulation, J. Chem. Phys. 133 (2010) 084701. [30] J. Czwartos, M. Sliwinska-Bartkowiak, B. Coasne, K.E. Gubbins, Melting of mixtures in silica nanopores, Pure Appl. Chem. 81 (2009) 1953-1959. [31] R. Radhakrishnan, K.E. Gubbins, M. Sliwinska-Bartkowiak, Effect of the fluidwall interaction on freezing of confined fluids: Toward the development of a global phase diagram, J. Chem. Phys. 112 (2000) 11048-11057. [32] K.E. Gubbins, Y. Long, M. Śliwinska-Bartkowiak, Thermodynamics of confined nano-phases, J. Chem. Thermodyn. 74 (2014) 169-183. [33] G. Kaptay, The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials, J. Nanosci. Nanotechnol. 12 (2012) 2625-2633. [34] A.T. Dinsdale, Sgte data for pure elements, Calphad 15 (1991) 317-425. [35] E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, seventh ed., Elsevier, London, 1992. [36] L.E. Sutton, A. Mitchell, A. Sommerfeld, L. Cross, Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956-1959, Chemical Society, 1965. [37] Q. Jiang, H.M. Lu, Size dependent interface energy and its applications, Surf. Sci. Rep. 63 (2008) 427-464. [38] A. Mataz, B.M. Gregory, Effects of confinement on material behaviour at the nanometre size scale, J. Phys.: Condens. Matter 17 (2005) 461. [39] N.H. Wu, X.Y. Ji, R. An, C. Liu, X.H. Lu, Generalized Gibbs free energy of confined nanoparticles, AIChE J. 63 (2017) 4595-4603. [40] K.K. Nanda, Liquid-drop model for the surface energy of nanoparticles, Phys. Lett. A 376 (2012) 1647-1649. |