[1] J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science 270 (1995) 590-593.[2] H.L. Wang, Y. Yang, Y.Y. Liang, J.T. Robinson, Y.G. Li, A. Jackson, Y. Cui, H.J. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability, Nano Lett. 11 (2011) 2644-2647.[3] Y.H. Xu, Q. Liu, Y.J. Zhu, Y.H. Liu, A. Langrock, M.R. Zachariah, C.S. Wang, Uniform nano-Sn/C composite anodes for lithium ion batteries, Nano Lett. 13 (2013) 470-474.[4] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transitionmetal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.[5] H. Li, P. Balaya, J. Maier, Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides, J. Electrochem. Soc. 151 (2004) A1878-A1885.[6] F. Badway, I. Plitz, S. Grugeon, S. Laruelle, M. Dolle, A.S. Gozdz, J.M. Tarascon, Metal oxides as negative electrode materials in Li-ion cells, Electrochem. Solid-State Lett. 5 (2002) A115-A118.[7] P.L. Taberna, S.Mitra, P. Poizot, P. Simon, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat. Mater. 5 (2006) 567-573.[8] C.K. Chan, H. Peng, G. Liu, K. Mcilwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Highperformance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3 (2008) 31-35.[9] F.S. Ke, L. Huang, B. Zhang, G.Z.Wei, L.J. Xue, J.T. Li, S.G. Sun, Nanoarchitectured Fe3O4 array electrode and its excellent lithium storage performance, Electrochim. Acta 78 (2012) 585-591.[10] Q.Q. Xiong, X.H. Xia, J.P. Tu, J. Chen, Y.Q. Zhang, D. Zhou, C.D. Gu, X.L. Wang, Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries, J. Power Sources 240 (2013) 344-350.[11] W.X. Zhang, S.H. Yang, In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates, Acc. Chem. Res. 42 (2009) 1617-1627.[12] J. Xu,W.X. Zhang, Z.H. Yang, S.H. Yang, Lithography inside Cu(OH)2 nanorods: a general route to controllable synthesis of the arrays of copper chalcogenide nanotubes with double walls, Inorg. Chem. 47 (2008) 699-704.[13] W.X. Zhang, J. Xu, Z.H. Yang, S.X. Ding, Mesoscale organization of Cu7S4 nanowires: formation of novel sheath-like nanotube array, Chem. Phys. Lett. 434 (2007) 256-259.[14] W.X. Zhang, X.G. Wen, S.H. Yang, Y. Berta, Z.L. Wang, Single crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature, Adv. Mater. 15 (2003) 822-825.[15] W.X. Zhang, X.G.Wen, S.H. Yang, Controlled reactions on a copper surface: Synthesis and characterization of nanostructured copper compound films, Inorg. Chem. 42 (2003) 5005-5014.[16] W.X. Zhang, M. Li, Q. Wang, G.D. Chen, M. Kong, Z.H. Yang, S. Mann, Hierarchical self-assembly of microscale cog-like superstructures for enhanced performance in lithium-ion batteries, Adv. Funct. Mater. 21 (2011) 3516-3523.[17] A. Débart, L. Dupont, P. Poizot, J.B. Leriche, J.M. Tarascon, A transmission electronmicroscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium, J. Electrochem. Soc. 148 (2001) A1266-A1274.[18] Y.M. Zhang, W.X. Zhang, Z.H. Yang, H.Y. Gu, Q. Zhu, S.H. Yang, M. Li, Self-sustained cycle of hydrolysis and etching at solution/solid interfaces: A general strategy to preparemetal oxidemicro-/nanostructured arrays for high-performance electrodes, Angew. Chem. Int. Ed. 54 (2015) 3932-3936.[19] S. Grugeon, S. Laruelle, L. Dupont, J.M. Tarascon, An update on the reactivity of nanoparticles Co-based compounds towards Li, Solid State Sci. 5 (2003) 895-904.[20] S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J.M. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential, J. Electrochem. Soc. 149 (2002) A627-A634.[21] Y.M. Zhang, W.X. Zhang, M. Li, Z.H. Yang, G.D. Chen, Q. Wang, Cosurfactantmediated microemulsion to free-standing hierarchical CuO arrays on copper substrates as anodes for lithium-ion batteries, J. Mater. Chem. A 1 (2013) 14368-14374.[22] W.X. Zhang, G. Ma, H.Y. Gu, Z.H. Yang, H. Cheng, A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0.5Mn1.5O4 cathode, J. Power Sources 273 (2015) 561-565.[23] J. Hassoun, F. Croce, I. Hong, B. Scrosati, Lithium-ion battery: Fe2O3 anode versus LiFePO4 cathode, Electrochem. Commun. 13 (2011) 228-231. |