[1] I. Ali, New generation adsorbents for water treatment, Chem. Rev. 112(2012) 5073-5091. [2] D.J. Cain, M.N. Croteau, C.C. Fuller, Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide, Environ. Sci. Technol. 47(2013) 2869-2876. [3] C. Dai, Y.D. Hu, Fe (Ⅲ) hydroxide nucleation and growth on quartz in the presence of Cu (Ⅱ), Pb (Ⅱ), and Cr (Ⅲ):Metal hydrolysis and adsorption, Environ. Sci. Technol. 49(2015) 292-300. [4] S. Dulnee, A.C. Scheinost, Surface reaction of snⅡ on goethite (α-FeOOH):Surface complexation, redox reaction, reductive dissolution, and phase transformation, Environ. Sci. Technol. 48(2014) 9341-9348. [5] H. Foerstendorf, N. Jordan, K. Heim, Probing the surface speciation of uranium (VI) on iron (hydr) oxides by in situ ATR FT-IR spectroscopy, J. Colloid Interface Sci. 416(2014) 133-138. [6] A.V. Vitela-Rodriguez, J.R. Rangel-Mendez, Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles, J. Environ. Manag. 114(2013) 225-231. [7] R.Y. Li, L.B. Zhang, P. Wang, Rational design of nanomaterials for water treatment, Nano 7(2015) 17167-17194. [8] H. Qiu, C. Liang, X.L. Zhang, M.D. Chen, Y.X. Zhao, T. Tao, Z.W. Xu, G. Liu, Fabrication of a biomass-based hydrous zirconium oxide nanocomposite for preferable phosphate removal and recovery, ACS Appl. Mater. Interfaces 7(2015) 20835-20844. [9] S.J. Tesh, T.B. Scott, Nano-composites for water remediation:A review, Adv. Mater. 26(2014) 6056-6068. [10] L.C. Oliveira, D.I. Petkowicz, A. Smaniotto, S.B. Pergher, Magnetic zeolites:A new adsorbent for removal of metallic contaminants from water, Water Res. 38(2004) 3699-3704. [11] S.F. Lim, Y.M. Zheng, S.W. Zou, J.P. Chen, Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study, Environ. Sci. Technol. 42(2008) 2551-2556. [12] J.A. Arcibar-Orozco, M. Avalos-Borja, J.R. Rangel-Mendez, Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon:As (V) removal from water, Environ. Sci. Technol. 46(2012) 9577-9583. [13] O. Hakami, Y. Zhang, C.J. Banks, Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water, Water Res. 46(2012) 3913-3922. [14] H. Qiu, S.J. Zhang, B.C. Pan, W.M. Zhang, L. Lv, Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers:Effect of ionic strength and visible light irradiation, Chem. Eng. J. 232(2013) 167-173. [15] M. Hua, Y.N. Jiang, B. Wu, B.C. Pan, X. Zhao, Q.X. Zhang, Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers:Effect of ionic strength and visible light irradiation, ACS Appl. Mater. Interfaces 5(2013) 12135-12142. [16] B.C. Pan, F.C. Han, G.Z. Nie, B. Wu, K. He, L. Lv, New strategy to enhance phosphate removal from water by hydrous manganese oxide, Environ. Sci. Technol. 48(2014) 5101-5107. [17] L. Cumbal, A.K. SenGupta, Arsenic removal using polymer-supported hydrated iron (Ⅲ) oxide nanoparticles:Role of Donnan membrane effect, Environ. Sci. Technol. 39(2005) 6508-6515. [18] G.Z. Nie, B.C. Pan, S.J. Zhang, B.J. Pan, Surface chemistry of nanosized hydrated ferric oxide encapsulated inside porous polymer:Modeling and experimental studies, J. Phys. Chem. C 117(2013) 6201-6209. [19] M. Komárek, A. Vaněk, V. Ettler, Chemical stabilization of metals and arsenic in contaminated soils using oxides-A review, Environ. Pollut. 172(2013) 9-22. [20] M.A.G. Hinkle, Z.M. Wang, D.E. Giammar, J.G. Catalano, Interaction of Fe (Ⅱ) with phosphate and sulfate on iron oxide surfaces, Geochim. Cosmochim. Acta 158(2015) 130-146. [21] M.A. Ali, D.A. Dzombak, Interactions of copper, organic acids, and sulfate in goethite suspensions, Geochim. Cosmochim. Acta 60(1996) 5045-5053. [22] D.A. Beattie, J.K. Chapelet, M. Grafe, W.M. Skinner, E. Smith, Interactions of copper, organic acids, and sulfate in goethite suspensions, Environ. Sci. Technol. 42(2008) 9191-9196. [23] Z.M. Jiang, L. Lv, W.M. Zhang, Q. Du, B.C. Pan, L. Yang, Q.X. Zhang, Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins:Role of surface functional groups, Water Res. 45(2011) 2191-2198. [24] H. Qiu, S.J. Zhang, B.C. Pan, W.M. Zhang, L. Lv, Effect of sulfate on Cu (Ⅱ) sorption to polymer-supported nano-iron oxides:Behavior and XPS study, J. Colloid Interface Sci. 366(2012) 37-43. [25] C.F. Baes, R.E. Mesmer, The Hydrolysis of Cations, Wiley, New York, 1976. [26] G. Bohart, E. Adams, Some aspects of the behavior of charcoal with respect to chlorine. 1, J. Am. Chem. Soc. 42(1920) 523-544. [27] R.M. Clark, Evaluating the cost and performance of field-scale granular activated carbon systems, Environ. Sci. Technol. 21(1987) 573-580. [28] V.C. Srivastava, B. Prasad, I.M. Mishra, I.D. Mall, M.M. Swamy, Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed, Ind. Eng. Chem. Res. 47(2008) 1603-1613. [29] H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc. 66(1944) 1664-1666. [30] C.B. Lopes, E. Pereira, Z. Lin, P. Pato, M. Otero, C.M. Silva, J. Rocha, A.C. Duarte, Fixedbed removal of Hg2+ from contaminated water by microporous titanosilicate ETS-4:Experimental and theoretical breakthrough curves, Microporous Mesoporous Mater. 145(2011) 32-40. [31] G.M. Walker, L.R. Weatherley, Adsorption of acid dyes on to granular activated carbon in fixed beds, Water Res. 31(1997) 2093-2101. [32] N. Savage, M.S. Diallo, Nanomaterials and water purification:Opportunities and challenges, J. Nanopart. Res. 7(2005) 331-342. [33] B.J. Pan, J. Wu, B.C. Pan, L. Lv, W.M. Zhang, L.L. Xiao, X.S. Wang, X.C. Tao, S.R. Zheng, Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents, Water Res. 43(2009) 4421-4429. [34] A.C. Scheinost, S. Abend, K.I. Pandya, D.L. Sparks, Kinetic controls on Cu and Pb sorption by ferrihydrite, Environ. Sci. Technol. 35(2001) 1090-1096. [35] K. Yang, B.S. Xing, Adsorption of organic compounds by carbon nanomaterials in aqueous phase:Polanyi theory and its application, Chem. Rev. 110(2010) 5989-6008. [36] A. Sperlich, A. Werner, A. Genz, G. Amy, E. Worch, M. Jekel, Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters:Modeling and experimental approaches, Water Res. 39(2005) 1190-1198. [37] J.Y. Song, W.H. Zou, Y.Y. Bian, F.Y. Su, R.P. Han, Adsorption characteristics of methylene blue by peanut husk in batch and column modes, Desalination 265(2011) 119-125. [38] J.L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, J. García, Removal of atenolol and isoproturon in aqueous solutions by adsorption in a fixed-bed column, Ind. Eng. Chem. Res. 51(2012) 5045-5055. [39] W.X. Zhang, L. Dong, H. Yan, H.J. Li, Z.W. Jiang, X.W. Kan, H. Yang, A.M. Li, R.S. Cheng, Removal of methylene blue from aqueous solutions by straw based adsorbent in a fixed-bed column, Chem. Eng. J. 173(2011) 429-436. |