[1] T. Freeman, K. Brockbank, B. Armstrong, Measurement and quantification of caking in powders, Procedia Eng. 102(2015) 35-44. [2] T.M. Lowry, F.C. Hemmings, Properties of powders. I. Caking of salts, London Sect. Soc. Chem. Ind. Faraday Soc. 39(1920) 101-110. [3] J.R. Adams, A.R. Merz, Hygroscopicity of fertilizer materials and mixtures, Ind. Eng. Chem. 21(1929) 305-307. [4] J. Aguilera, J.D. Valle, M. Karel, Caking phenomena in amorphous food powders, Trends Food Sci. Technol. 6(5) (1995) 149-155. [5] M. Carpin, H. Bertelsen, J.K. Bech, R. Jeantet, J. Risbo, P. Schuck, Caking of lactose:A critical review, Trends Food Sci. Technol. 53(2016) 1-12. [6] S. Palzer, The effect of glass transition on the desired and undesired agglomeration of amorphous food powders, Chem. Eng. Sci. 60(14) (2005) 3959-3968. [7] D.I.W. Pietsch, Agglomeration Processes:Phenomena, Technologies, Equipment, Wiley, Darmstadt, 2008. [8] A.B. Khadilkar, P.L. Rozelle, S.V. Pisupati, A study on initiation of ash agglomeration in fluidized bed gasification systems, Fuel 152(2015) 48-57. [9] L. Malafronte, L. Ahrné, F. Innings, A. Jongsma, A. Rasmuson, Prediction of regions of coalescence and agglomeration along a spray dryer-Application to skim milk powder, Chem. Eng. Res. Des. 104(2015) 703-712. [10] F. Thielmann, M. Naderi, M.A. Ansari, F. Stepanek, The effect of primary particle surface energy on agglomeration rate in fluidised bed wet granulation, Powder Technol. 181(2) (2008) 160-168. [11] E.M. Ålander, Åke C. Rasmuson, Agglomeration and adhesion free energy of paracetamol crystals in organic solvents, AIChE J. 53(10) (2007) 2590-2605. [12] J. Cleaver, G. Karatzas, S. Louis, I. Hayati, Moisture-induced caking of boric acid powder, Powder Technol. 146(1-2) (2004) 93-101. [13] U. Bröckel, M. Wahl, R. Kirsch, H.J. Feise, Formation and growth of crystal bridges in bulk solids, Chem. Eng. Technol. 29(6) (2006) 691-695. [14] W. Pietsch, Agglomeration in Industry, Wiley, Darmstadt, 2004. [15] L. Wang, Influencing factors on caking of compound fertilizer and their countermeasures, Ningxia J. Agric. For. Sci. Technol. 54(1) (2013) 44-46. [16] Y. Tong, Influencing factors and experimental method of edible salt caking, J. Salt Chem. Ind. 42(5) (2013) 8-13. [17] L. Liu, Aggregation of silica nanoparticles in an aqueous suspension, AIChE J. 61(7) (2015) 2136-2146. [18] X. Tan, H. Fenniri, M.R. Gray, Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding, Energy Fuel 23(7) (2009) 3687-3693. [19] A.W. Pacek, P. Ding, A.T. Utomo, Effect of energy density, PH and temperature on de-aggregation in nano-particles/water suspensions in high shear mixer, Powder Technol. 173(3) (2007) 203-210. [20] W.R. Richmond, R.L. Jones, P.D. Fawell, The relationship between particle aggregation and rheology in mixed silica-titania suspensions, Chem. Eng. J. 71(1) (1998) 67-75. [21] T.M. Lowry, E.E. Walker, The properties of potyders. Part Ⅱ. Expansion and shrinkage during caking of potassium carbonate, Faraday Soc (1922) 78-81. [22] J. Silverberg, J.R. Lehr, G. H. Jr, Fertilizer caking, microscopic study of the mechanism of caking and its prevention in some granular fertilizers, J. Agric. Food Chem. 6(6) (1958) 442-448. [23] W.A. Mitchell, An investigation into the caking of granular fertilizers, J. Sci. Food Agric. 5(9) (1954) 455-456. [24] A.L. Whynes, T.P. Dee, The caking of granular fertilizers:An investigation on a laboratory scale, J. Sci. Food Agric. 8(8) (1957) 577-591. [25] W.J. Tucker, Surfactants in fertilizers, effects of surface active agents on caking of stored mixed fertilizer, J. Agric. Food Chem. 3(8) (1955) 669-672. [26] G.L. Tucker, L.F. Roy, Caking in ammonium phosphate fertilizers, J. Agric. Food Chem. 17(6) (1969) 1279-1283. [27] Y. Peleg, C.H. Mannheim, Caking of onion powder, J. Food Technol. 4(2) (1969) 157-160. [28] R.L. Gilbert, P.W. Knapp, Development of an accelerated caking test for urea, J. Agric. Food Chem. 18(3) (1970) 397-400. [29] C. Sjolin, Mechanism of caking of ammonium nitrate (NH4NO3) prills, J. Agric. Food Chem. 20(4) (1972) 895-900. [30] A. Lafci, K. Gürüz, H. Yücel, Investigation of factors affecting caking tendency of calcium ammonium nitrate fertilizer and coating experiments, Nutr. Cycl. Agroecosyst. 18(1) (1988) 63-70. [31] O. Akinobu, S. Kazumi, D. Kazumi, S. Hisakazu, S. Yusaku, Caking of δ-Dgluconolactone powder, Chem. Pharm. Bull. 23(1975) 673-676. [32] T. Tanaka, Evaluating the caking strength of powders, Ind. Eng. Chem. Prod. Res. Dev. 17(3) (1978) 241-246. [33] D.W. Rutland, Fertilizer caking:Mechanisms, influential factors, and methods of prevention, Nutr. Cycl. Agroecosyst. 30(1) (1991) 99-114. [34] R.J. Lloyd, X.D. Chen, J.B. Hargreaves, Glass transition and caking of spray-dried lactose, Int. J. Food Sci. Technol. 31(4) (1996) 305-311. [35] G.M. Walker, C. R. H., M.N. Ahmad, J. N. F., A.G. Kells, Granular fertilizer agglomeration in accelerated caking tests, Ind. Eng. Chem. Res. 38(10) (1999) 4100-4103. [36] N. Wakiyama, A. Kusai, K. Nishimura, Mechanism of caking of granules containing oily materials, Int. J. Pharm. 78(2-3) (1992) 95-102. [37] Y.L. Chen, J.Y. Chou, Selection of anti-caking agents through crystallization, Powder Technol. 77(1) (1993) 1-6. [38] B. Rogé, M. Mathlouthi, Caking of white crystalline sugar, Int. Sugar J. 105(1251) (2003) 128-136. [39] C.I. Beristain, E. Azuara, T.T. Tamayo, E.J. Vernoncarter, Effect of caking and stickiness on theretention of spray-dried encapsulated orange peel oil, J. Sci. Food Agric. 83(15) (2003) 1613-1616. [40] M. Mathlouthi, B. Rogé, Water vapour sorption isotherms and the caking of food powders, Food Chem. 82(1) (2003) 61-71. [41] Y. Yokogawa, Y. Shiotsu, F. Nagata, M. Watanabe, Apatite hydrogel and its caking behavior, Key Eng. Mater. 254-256(2003) 63-66. [42] Y.D. Listiohadi, J.A. Hourigan, R.W. Sleigh, R.J. Steele, Role of amorphous lactose in the caking of α-lactose monohydrate powders, Aust. J. Dairy Technol. 60(1) (2005) 19-32. [43] Y.D. Listiohadi, J.A. Hourigan, R.W. Sleigh, R.J. Steele, Properties of lactose and its caking behavior, Aust. J. Dairy Technol. 60(1) (2005) 33-52. [44] M. Röck, J. Schwedes, Investigations on the caking behaviour of bulk solidsmacroscale experiments, Powder Technol. 157(1-3) (2005) 121-127. [45] A.K. Salameh, L.S. Taylor, Deliquescence-induced caking in binary powder blends, Pharm. Dev. Technol. 11(4) (2006) 453-464. [46] B. Weigl, Y. Pengiran, H.J. Feise, M. Röck, R. Janssen, Comparative testing of powder caking, Chem. Eng. Technol. 29(6) (2006) 686-690. [47] M. Wahl, R. Kirsch, U. Bröckel, S. Trapp, M. Bottlinger, Caking of urea prills, Chem. Eng. Technol. 29(6) (2006) 674-678. [48] S.W. Billings, J.E. Bronlund, A.H.J. Paterson, Effects of capillary condensation on the caking of bulk sucrose, J. Food Eng. 77(4) (2006) 887-895. [49] M. Röck, M. Ostendorf, J. Schwedes, Development of an uniaxial caking tester, Chem. Eng. Technol. 29(6) (2006) 679-685. [50] R. Ruan, Y.J. Choi, M.S. Chung, Caking in food powders, Food Sci. Biotechnol. 16(3) (2007) 329-336. [51] J.J. Fitzpatrick, M. Hodnett, M. Twomey, P.S.M. Cerqueira, J. O'Flynn, Y.H. Roos, Glass transition and the flowability and caking of powders containing amorphous lactose, Powder Technol. 178(2) (2007) 119-128. [52] J.J. Fitzpatrick, E. O'Callaghan, J. O'Flynn, Application of a novel cake strength tester for investigating caking of skim milk powder, Food Bioprod. Process. 86(3) (2008) 198-203. [53] Y. Listiohadi, J.A. Hourigan, R.W. Sleigh, R.J. Steele, Moisture sorption, compressibility and caking of lactose polymorphs, Int. J. Pharm. 359(1-2) (2008) 123-134. [54] J.J. Fitzpatrick, N. Descamps, K. O'Meara, C. Jones, D. Walsh, M. Spitere, Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt, Powder Technol. 204(1) (2010) 131-137. [55] M.E. Chávez, N.A. Santamaría, J.C. Gumy, P. Marchal, Moisture-induced caking of beverage powder, J. Sci. Food Agric. 91(14) (2011) 2582. [56] D.M. Oliveira, E. Clemente, J.M.C.D. Costa, Hygroscopic behavior and degree of caking of grugru palm (Acrocomia aculeata) powder, J. Food Sci. Technol. 51(10) (2014) 2783-2789. [57] K. Arp, K.E. Ileleji, R.L. Stroshine, Stress relaxation behavior of corn distillers dried grains with solubles (DDGS) in relation to caking, Powder Technol. 235(3) (2013) 209-211. [58] G. Calvert, N. Curcic, C. Redhead, H. Ahmadian, C. Owen, D. Beckett, A new environmental bulk powder caking tester, Powder Technol. 249(11) (2013) 323-329. [59] N. Descamps, S. Palzer, Y.H. Roos, J.J. Fitzpatrick, Glass transition and flowability/caking behaviour of maltodextrin DE 21, J. Food Eng. 119(4) (2013) 809-813. [60] C.I. Haider, M.J. Hounslow, A.D. Salman, T.O. Althaus, G. Niederreiter, S. Palzer, Influence of environmental conditions on caking mechanisms in individual amorphous food particle contacts, AIChE J. 60(8) (2014) 2774-2787. [61] S. Baueregger, M. Perello, J. Plank, Influence of anti-caking agent kaolin on film formation of ethylene-vinylacetate and carboxylated styrene-butadiene latex polymers, Cem. Concr. Res. 58(58) (2014) 112-120. [62] A.H.J. Paterson, U. Bröckel, Caking development in lemon juice powder, Procedia Eng. 102(2015) 142-149. [63] C. Modugno, A.H.J. Paterson, J. Mcleod, Lactose caking:Influence of the particle size distribution and the water content, Procedia Eng. 102(2015) 114-122. [64] M. Dupas-Langlet, M. Benali, I. Pezron, K. Saleh, L. Metlas-Komunjer, The impact of deliquescence lowering on the caking of powder mixtures, Powder Technol. 270(2015) 502-509. [65] M.F. Saleh, R.M. Dhenge, J.J. Cartwright, M.J. Hounslow, A.D. Salman, Twin screw wet granulation:Effect of process and formulation variables on powder caking during production, Int. J. Pharm. 496(2) (2015) 571-582. [66] K. Brockbank, B. Armstrong, Y. Chandorkar, T. Freeman, Understanding powder caking as a consequence of a range of mechanisms by means of powder rheometry, Part. Sci. Technol. 33(1) (2014) 102-108(7). [67] T.W.Y. Tham, C. Wang, A.T.H. Yeoh, W. Zhou, Moisture sorption isotherm and caking properties of infant formulas, J. Food Eng. 175(2015) 117-126. [68] A.B. Albadarin, T.D. Lewis, G.M. Walker, Granulated polyhalite fertilizer caking propensity, Powder Technol. 308(2017) 193-199. [69] M. Carpin, H. Bertelsen, A. Dalberg, C. Roiland, J. Risbo, P. Schuck, Impurities enhance caking in lactose powder, J. Food Eng. 198(2017) 91-97. [70] J. Petit, F. Michaux, C. Jacquot, E.C. Montes, J. Dupas, V. Girard, Storage-induced caking of cocoa powder, J. Food Eng. 199(2017) 42-53. [71] T.W. Tham, X. Xu, A.T. Yeoh, W. Zhou, Investigation of caking by fat bridging in aged infant formula, Food Chem. 218(2017) 30-39. [72] M.C. Leaper, M. Bradley, J. Cleaver, Constructing an engineering model for moisture migration in bulk solids as a prelude to predicting moisture migration caking, Adv. Powder Technol. 13(4) (2002) 411-424. [73] L. Komunjer, C. Affolter, Absorption-evaporation kinetics of water vapour on highly hygroscopic powder:case of ammonium nitrate, Powder Technol. 157(1) (2005) 67-71. [74] N. Christakis, J. Wang, M.K. Patel, M.S.A. Bradley, M.C. Leaper, M. Cross, Aggregation and caking processes of granular materials:Continuum model and numerical simulation with application to sugar, Adv. Powder Technol. 17(5) (2006) 543-565. [75] S.W. Billings, A.H.J. Paterson, Prediction of the onset of caking in sucrose from temperature induced moisture movement, J. Food Eng. 88(4) (2008) 466-473. [76] M. Hartmann, S. Palzer, Caking of amorphous powders-Material aspects, modelling and applications, Powder Technol. 206(1-2) (2011) 112-121. [77] M. Langlet, M. Benali, I. Pezron, K. Saleh, P. Guigon, L. Metlas-Komunjer, Caking of sodium chloride:Role of ambient relative humidity in dissolution and recrystallization process, Chem. Eng. Sci. 86(5) (2013) 78-86. [78] M. Chen, S. Wu, W. Tang, J. Gong, Caking and adhesion free energy of maltitol:Studying of mechanism in adhesion process, Powder Technol. 272(2015) 235-240. [79] M. Chen, L. Lin, Y. Zhang, S. Wu, E. Liu, K. Wang, J. Wang, J. Gong, Mechanism and inhibition of trisodium phosphate particle caking:effect of particle shape and solubility, Particuology 253(8) (2015) 115-121. [80] Z. Afrassiabian, M. Leturia, M. Benali, M. Guessasma, K. Saleh, An overview of the role of capillary condensation in wet caking of powders, Chem. Eng. Res. Des. 110(2016) 245-254. [81] R.A. Lipasek, J.C. Ortiz, L.S. Taylor, L.J. Mauer, Effects of anticaking agents and storage conditions on the moisture sorption, caking, and flowability of deliquescent ingredients, Food Res. Int. 45(1) (2012) 369-380. [82] D. Wang, J. Chu, J. Li, T. Qi, W. Wang, Anti-caking in the production of titanium dioxide using low-grade titanium slag via the NaOH molten salt method, Powder Technol. 232(4) (2012) 99-105. [83] P. Ramachandran, M.N. Poojitha, N. Srividya, Influence of maltodextrin and nutritive anti-caking agents on quality characteristics and storage stability of papaya powder, Res. J. Pharm., Biol. Chem. Sci. 5(2) (2014) 1108-1123. [84] M.S. Chung, R.R. Ruan, P. Chen, S.H. Chung, T.H. Ahn, K.H. Lee, Study of caking in powdered foods using nuclear magnetic resonance spectroscopy, J. Food Sci. 65(1) (2000) 134-138. [85] M.S. Chung, R. Ruan, P. Chen, Y.G. Lee, T.H. Ahn, C.K. Baik, Formulation of cakingresistant powdered soups based on NMR analysis, J. Food Sci. 66(8) (2001) 1147-1151. [86] M.S. Chung, R. Ruan, P. Chen, J.H. Kim, T.H. Ahn, C.K. Baik, Predicting caking behaviors in powdered foods using a low-field nuclear magnetic resonance (NMR) technique, Food Sci. Technol. 36(8) (2003) 751-761. [87] C.I. Cheigh, H.W. Wee, M.S. Chung, Caking characteristics and sensory attributes of ramen soup powder evaluated using a low-resolution proton NMR technique, Food Res. Int. 44(4) (2011) 1102-1107. [88] Y.D. Listiohadi, J.A. Hourigan, R.W. Sleigh, R.J. Steele, An exploration of the caking of lactose in whey and skim milk powders, Aust. J. Dairy Technol. 60(3) (2005) 207-213. [89] D.C. Prime, A.G.F. Stapley, C.D. Rielly, J.R. Jones, M.C. Leaper, Analysis of powder caking in multicomponent powders using atomic force microscopy to examine particle properties, Chem. Eng. Technol. 34(1) (2011) 98-102. [90] A.A.C. Bode, S. Jiang, J.A.M. Meijer, W.J.P.V. Enckevort, E. Vlieg, Growth inhibition of sodium chloride crystals by anticaking agents:in situ observation of step pinning, Cryst. Growth Des. 12(12) (2012) 5889-5896. [91] A.A.C. Bode, M. Verschuren, M. Jansen, S. Jiang, J.A.M. Meijer, W.J.P.V. Enckevort, Influence of anticaking agents on the caking of sodium chloride at the powder and two-crystal scale, Powder Technol. 277(2015) 262-267. [92] M. Wahl, U. Bröckel, L. Brendel, H.J. Feise, B. Weigl, M. Röck, Understanding powder caking:predicting caking strength from individual particle contacts, Powder Technol. 188(2) (2008) 147-152. [93] S.C. Thakur, H. Ahmadian, S. Jin, Y.O. Jin, An experimental and numerical study of packing, compression, and caking behaviour of detergent powders, Particuology 12(1) (2014) 2-12. [94] P. St, The relation between material properties and supra-molecular structure of water-soluble food solids, Trends Food Sci. Technol. 21(1) (2010) 12-25. [95] A.M. Stoklosa, R.A. Lipasek, L.S. Taylor, L.J. Mauer, Effects of storage conditions, formulation, and particle size on moisture sorption and flowability of powders:A study of deliquescent ingredient blends, Food Res. Int. 49(2) (2012) 783-791. [96] J.M. Aguilera, G. Levi, M. Karel, Effect of water content on the glass transition and caking of fish protein hydrolyzates, Biotechnol. Prog. 9(6) (1993) 651-654. [97] M. Yoshioka, B.C. Hancock, G. Zografi, Crystallization of indomethacin from the amorphous state below and above its glass transition temperature, J. Pharm. Sci. 83(12) (1994) 1700-1705. [98] E.A. Schmitt, D. Law, G.G.Z. Zhang, Nucleation and crystallization kinetics of hydrated amorphous lactose above the glass transition temperature, J. Pharm. Sci. 88(3) (1999) 291-296. [99] D. Dopfer, S. Palzer, S. Heinrich, L. Fries, S. Antonyuk, C. Haider, Adhesion mechanisms between water soluble particles, Powder Technol. 238(2013) 35-49. [100] L.E. Chuy, T.P. Labuza, Caking and stickiness of dairy-based food powders as related to glass transition, J. Food Sci. 59(1) (1994) 43-46. [101] L.O. Figura, The physical modification of lactose and its thermoanalytical identification, Thermochim. Acta 222(2) (1993) 187-194. [102] T.G. Fox, P.J. Flory, Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight, J. Appl. Phys. 21(6) (1950) 581-591. [103] M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, JACS 77(14) (1955) 3701-3707. [104] H.J. Butt, M. Kappl, Normal capillary forces, Adv. Colloid Interf. Sci. 146(1-2) (2009) 48-60. [105] J.A. Baird, R. Olayo-Valles, C. Rinaldi, L.S. Taylor, Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol, J. Pharm. Sci. 99(1) (2010) 154-168. [106] L.J. Mauer, L.S. Taylor, Deliquescence of pharmaceutical systems, Pharm. Dev. Technol. 15(6) (2010) 582-594(13). [107] S. Sheokand, S.R. Modi, A.K. Bansal, Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials, J. Pharm. Sci. 103(11) (2014) 3364-3376. [108] A.W. Jenike, Gravity Flow of Bulk Solids, Bulletin No. 108, Utah State University, 1961. [109] J.J. Fitzpatrick, K. Barry, C. Psm, T. Iqbal, J. O'Neill, Y.H. Roos, Effect of composition and storage conditions on the flowability of dairy powders, Int. Dairy J. 17(4) (2007) 383-392. [110] J. Schwedes, Review on testers for measuring flow properties of bulk solids, Granul. Matter 5(1) (2003) 1-43. [111] A. Hassanpour, M. Ghadiri, Characterisation of flowability of loosely compacted cohesive powders by indentation, Part. Part. Syst. Charact. 24(2) (2007) 117-123. [112] P. Pierrat, H.S. Caram, Tensile strength of wet granular materials, Powder Technol. 91(2) (1997) 83-93. [113] P.G.C. Petean, M.L. Aguiar, Determining the adhesion force between particles and rough surfaces, Powder Technol. 274(2015) 67-76. [114] T. He, W. Zhong, B. Jin, Comparison of construction method for DEM simulation of ellipsoidal particles, Chin. J. Chem. Eng. 21(7) (2013) 800-807. [115] J. Emmerich, Q. Tang, Y. Wang, P. Neubauer, S. Junne, S. Maaß, Optical inline analysis and monitoring of particle size and shape distributions for multiple applications:Scientific and industrial relevance, Chin. J. Chem. Eng. 27(2) (2019) 257-277. |