[1] U.S. Energy Information Administration (EIA), China Analysis Report, EIA, Washington, D.C, 2019-12-10http://www.eia.gov/.pdf. [2] N. Zeeshan, Light alkane dehydrogenation to light olefin technologies:A comprehensive review, Rev. Chem. Eng. 6(3) (2015) 1-23. [3] P. Michorczyk, J. Ogonowski, P. Kustrowski, Chromium oxide supported on MUM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2, Appl. Catal. A-Gen 349(2008) 62-69. [4] H.M. Wang, Y. Chen, X. Yan, W.Z. Lang, Y.J. Guo, Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2:Effect of Cr adding time in solgel process, Micropor. Mesopor. Mat 284(5) (2019) 69-77. [5] S. Tetsuya, S. Kenichi, T. Kentaro, T. Tanaka, Role of CO2 in dehydrogenation of propane over Cr-based catalysts, Catal. Today 185(2012) 151-156. [6] A. Marktus, R. Fateme, J. Abbas, F. Mark, Oxidative dehydrogenation of propane to propylene with carbon dioxide, Appl. Catal. B-Environ 52(1) (2017) 429-445. [7] S.B. Wang, Z.H. Zhu, Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation, Energy Fuel 18(2004) 1126-1139. [8] A. Isabelle, V. Vladimir, A. Konstantinos, R. Marie-Francoise, V.D.V. Pascal, B. Vitaliy, B.M. Guy, The role of CO2 in the dehydrogenation of propane over WOx-VOx/SiO2, J. Catal. 335(2016) 1-10. [9] B.J. Xu, B. Zheng, W. Hua, Chromium oxide supported on MUM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2, Stud. Surf. Sci. Catal. 170(4) (2007) 1072-1079. [10] C. Wei, L.J. Jie, P. Sebastien, Synthesis and performance of vanadium-based catalysts for the selective oxidation of light alkanes, Catal. Today 5(6) (2017) 145-157. [11] S.H. Zhang, H.C. Liu, Oxidative dehydrogenation of propane over Mg-V-O oxides supported on MgO-coated silica:Structural evolution and catalytic consequence, Appl. Catal. A-Gen 573(11) (2019) 41-48. [12] A. Sameer, I.L. Hugo, Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2CO3 catalyst, Fuel 128(14) (2014) 120-140. [13] P. Michorczyk, P. Kustrowski, L. Chmielarz, Influence of redox properties on the activity of iron oxide catalysts in dehydrogenation of propane with CO2, React. Kinet. Catal. L 82(5) (2004) 121-130. [14] B.J. XU, B. Zheng, W. Hua, Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts, J. Catal. 239(7) (2006) 470-477. [15] M. Gheorghita, A. Rawa, Propane oxidative dehydrogenation over VOx/SBA-15 catalysts, Catal. Today 306(2018) 260-267. [16] F. Ma, S. Chen, Y.H. Li, H. Zhou, A.X. Xu, W.M. Lu, Nano-MgO supported CrOx catalysts applied in propane oxidative dehydrogenation:Relationship between active chromium phases and propane reaction pathway, Appl. Surf. Sci. 313(2014) 654-659. [17] L. Zhang, Z.Y. Wang, J. Song, Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane, J. CO2. Util 38(5) (2020) 306-313. [18] Y.F. Gao, F. Haeri, F. He, F.X. Li, Alkali metal-promoted LaxSr2-xFeO4-δ redox catalysts for chemical looping oxidative dehydrogenation of ethane, ACS Catal. 8(3) (2018) 1757-1766. [19] T.T. Miki, M. Ogawa, N. Haneda, A. Kakuta, S. Ueno, S. Tateishi, M. Matsuura, Enhanced oxygen storage capacity of cerium oxides in cerium dioxide/lanthanum sesquioxide/alumina containing precious metals, J. Phys. Chem. C 94(6) (1990) 6464-6467. [20] P. Moriceau, B. Grzybowska, L. Gengembre, Y. Barbaux, Effect of cerium on the mobility of oxygen on manganese oxides, Appl. Catal. A-Gen 199(2000) 73-82. [21] Q.J. Guo, J. Zhang, J.Y. Hao, Flow characteristics in an acoustic bubbling fluidized bed at high temperature, Chem. Eng. Process. 50(2011) 331-337. [22] Y.K. Muhammad, A.G. Sameer, A.R. Shaikh, Fluidized bed oxidative dehydrogenation of ethane to ethylene over VOx/Ce-γ-Al2CO3 catalysts:Reduction kinetics and catalyst activity, Mol. Catal 443(1) (2017) 78-91. [23] M.R. Benjaram, K. Lakshmi, T. Gode, Novel nanocrystalline Ce1-xLaxO2-δ (x=0.2) solid solutions:Structural characteristics and catalytic performance, J. Mol. Catal. A-Chem 319(2010) 52-57. [24] J.M. López, A.L. Gilbank, T. García, B. Solsona, L.S. Agouram, The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation, Appl. Catal. B-Environ, 174(5)(2015)403-412. [25] A.B. Tatiana, V.D. Valerii, A.S. Valeriy, V.M. Grigory, Oxidative dehydrogenation of ethane with CO2 over CrOx catalysts supported on Al2CO3, ZrO2, CeO2 and CexZr1-xO2, Catal. Today 33(2019) 71-80. [26] T. Blasco, J.L. Nieto, Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts, Appl. Catal. A-Gen 157(1997) 117-142. [27] Y.F. Gao, M.N. Luke, F.X. Li, Li-promoted LaxSr2-xFeO4-δ core-shell redox catalysts for oxidative dehydrogenation of ethane under a cyclic redox scheme, ACS Catal. 6(2016) 7293-7302. [28] A. Shafiefarhood, N. Galinsky, Y. Huang, Y. Chen, F.X. Li, Fe2O3@LaxSr1-xFeO3 coreshell redox catalyst for methane partial oxidation, ChemCatChem 6(9) (2014) 790-799. [29] L.M. Neal, A. Shafiefarhood, F.X. Li, Dynamic methane partial oxidation using a Fe2O3@La0.8Sr0.2FeO3-δ core-shell redox catalyst in the absence of gaseous oxygen, ACS Catal. 4(2014) 3560-3569. [30] F.L. Normand, L. Hilaire, K.G. Kili, G.J. Krill, Oxidation state of cerium in cerium-based catalysts investigated by spectroscopic probes, J. Phys. Chem. C 92(1988) 2561-2568. [31] Y. Kim, H. Schlegl, K. Kim, J.T.S. Irvine, J.H. Kim, X-ray photoelectron spectroscopy of Sm-doled layered Perovskite for intermediate temperature-operating solid oxide fuel cell, Appl. Surf. Sci. 288(11) (2014) 695-701. [32] N.A. Merino, B.P. Barbero, P. Eloy, L.E. Cadús, La1-xCaxCoO3 perovskite-type oxides:Identification of the surface oxygen species by XPS, Appl. Surf. Sci. 253(15) (2006) 1489-1493. [33] A. Galtayries, R. Sporken, J. Riga, G. Blanchard, R. Caudano, XPS comparative study of ceria/zirconia mixed oxides:Powders and thin film characterisation, J. Electron. Spectrosc 5(9) (1998) 88-93. [34] E.N. Ntainjua, T.E. Davies, T. Garcia, B. Solsona, S.H. Taylor, Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon, Catal. Lett. 141(3) (2011) 1732-1738. [35] V. Balcaen, R. Roelant, H. Poelman, D. Poelman, G.B. Marin, Tap study on the active oxygen species in the total oxidation of propane over a CuO-CeO2/γ-Al2CO3catalyst, Catal. Today 157(1) (2010) 49-54. [36] A. Aranda, S. Agouram, J.M. López, A.M. Mastral, D.R. Sellick, B. Solsona, S.H. Taylor, T. García, Oxygen defects:The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene, Appl. Catal. B-Environ 127(2) (2012) 77-88. [37] M.S. Parag, N.D. Andrew, E.D. Thomas, J.M. David, H.T. Stuart, Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene volatile organic compounds, Appl. Catal. B-Environ 253(6) (2019) 331-340. [38] J. Haber, M. Witko, Quantum-chemical modelling of hydrocarbon oxidation on vanadium-based catalysts, Catal. Today 23(1) (1995) 1-6. [39] J.M. Libre, Y. Barbaux, B. Grzybowska, J.P.A. Bonnelle, A surface potential study of adsorbed oxygen species on a Bi2Mo3O12 catalyst, React. Kinet. Catal. L 20(5) (1982) 49-54. [40] M. Che, A.J. Tench, Characterization and reactivity of molecular oxygen species on oxide surfaces, Adv. Catal. 14(6) (1982) 1-148. [41] M. Che, A.J. Tench, Characterization and reactivity of mononuclear oxygen species on oxide surfaces, Adv. Catal. 31(1) (1982) 77-133. [42] E.Z. Skoufa, A.A. Heracleous, On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies, J. Catal. 322(10) (2015) 118-129. [43] G.A. Tribalis, S. Tsilomelekis, Molecular structure and reactivity of titania-supported transition metal oxide catalysts synthesized by equilibrium deposition filtration for the oxidative dehydrogenation of ethane, CR. Chim 19(1) (2016) 1226-1236. [44] V. Balcaen, I. Sack, M. Olea, G.B. Marin, Transient kinetic modeling of the oxidative dehydrogenation of propane over a vanadia-based catalyst in the absence of O2, Appl. Catal. A-Gen 15(4) (2009) 31-42. [45] E.V. Kondratenko, A. Brückner, On the nature and reactivity of active oxygen species formed from O2 and N2O on VOx/MCM-41 used for oxidative dehydrogenation of propane, J. Catal. 19(8) (2010) 111-116. |