[1] L.B. Yu, X.D. Jia, Z.L. Xia, Combustible dust explosion prevention and control, Environmental and occupational medicine 31(08) (2014) 608-610. [2] S. Yuan, Q.H. Wang, D.F. Wang, N.C. Yang, Advances in dust explosion protection measures, Blasting Equipment 46(04) (2017) 13-20. [3] K. Sridhar Iya, S. Wollowitz, W.E. Kaskan, The mechanism of flame inhibition by sodium salts, Symp. Combust. 15(1975) 329-336. [4] M. Dewitte, J. Vrebosch, A. van Tiggelen, Inhibition and extinction of premixed flames by dust particles, Combust. Flame 8(1964) 257-266. [5] M. Vanpee, P.P. Shirodkar, A study of flame inhibition by metal compounds, Symp. Combust. 17(1979) 787-795. [6] T.M. Jayaweera, C.F. Melius, W.J. Pitz, C.K. Westbrook, O.P. Korobeinichev, V.M. Shvartsberg, A.G. Shmakov, I.V. Rybitskaya, H.J. Curran, Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios, Combust. Flame 140(2005) 103-115. [7] P.R. Amyotte, Solid inertants and their use in dust explosion prevention and mitigation, J. Loss Prevent. Process Indust. 19(2006) 161-173. [8] V.I. Babushok, G.T. Linteris, P. Hoorelbeke, D. Roosendans, K. van Wingerden, Flame inhibition by potassium-containing compounds, Combust. Sci. Technol. 189(2017) 2039-2055. [9] Y.Z. Li, J.M. Yuan, B.M. Wang, Research progress of dust explosion, Journal of Taiyuan normal university(Science edition) 02(2004) 79-82. [10] B.Q. Lin, X.N. Mei, K. Wang, Q.Z. Li, Experimental study on the explosive characteristics of aluminum powder in micron scale based on 20 L spherical explosive device, Journal of Beijing institute of technology 36(07) (2016) 661-667. [11] Diana Castellanos, Victor H. Carreto-Vazquez, Chad V. Mashuga, Remi Trottier, Andres F. Mejia, M. Sam Mannan, The effect of particle size polydispersity on the explosibility characteristics of aluminum dust, Powder Technol. 254(2014) 331-337. [12] Ying Huang, Grant A. Risha, Vigor Yang, Richard A. Yetter, Effect of particle size on combustion of aluminum particle dust in air, Combustion and Flame 156(1) (2009) 5-13. [13] K. Rolf, Eckhoff, Chapter 1-Dust Explosions-Origin, Propagation, Prevention, and Mitigation:An Overview Editor(S):Dust Explosions in the Process Industries, Third edition, 2003. [14] H.P. Jiang, M.S. Bi, B. Li, D.Q. Ma, W. Gao, Flame inhibition of aluminum dust explosion by NaHCO3 and NH4 H2PO4, Combustion and Flame 200(2019) 97-114. [15] X.F. Chen, H.M. Zhang, X. Chen, X.Y. Liu, Y. Niu, Y. Zhang, B.H. Yuan, Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution, J. Loss Prev. Process Ind. 49(2017) 905-911. [16] J. Amrogowicz, W. Kordylewski, Effectiveness of dust explosion suppression by carbonates and phosphates, Combustion and Flame 85(3) (1991) 520-522. [17] W.G. Lei, H.P. Bi, Study on application evaluation of aluminum powder explosion suppressant, Safety and Environmental Engineering 25(2) (2018) 121-125, 138. [18] M. Hertzberg, K.L. Cashdollar, I. Zlochower, D.L. Ng, Inhibition and extinction of explosions in heterogeneous mixtures, Symp. Combust. 20(1985) 1691-1400. [19] O. Dounia, O. Vermorel, T. Poinsot, Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles, Combust. Flame 193(2018) 313-326. [20] L. Catoire, J.F. Legendre, M. Giraud, Kinetic model for aluminum-sensitized ram accelerator combustion, J. Propuls. Power 19(2003) 196-202. [21] J. Glorian, S. Gallier, L. Catoire, On the role of heterogeneous reactions in aluminum combustion, Combust. Flame 168(2016) 378-392. [22] O.P. Korobeinichev, V.M. Shvartsberg, A.G. Shmakov, D.A. Knyazkov, I.V. Rybitskaya, Inhibition of atmospheric lean and rich CH4/O2/Ar flames by phosphorus-containing compound, Proc. Combust. Inst. 31(2007) 2741-2748. [23] A. Twarowski, The temperature dependence of H + OH recombination in phosphorus oxide containing post-combustion gases, Combust. Flame 105(1996) 407-413. [24]. C.K. Database, NIST standard reference database, http://kinetics.nist.gov2001. [25] A.A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combust. Flame 156(2009) 2093-2105. [26] B. Li, Y. He, Z.S. Li, A.A. Konnov, Measurements of NO concentration in NH3-dopedCH4 + air flames using saturated laser-induced fluorescence and probe sampling, Combust. Flame 160(2013) 40-46. [27] M.T. Swihart, L. Catoire, Thermochemistry of aluminum species for combustion modeling from ab initio molecular orbital calculations, Combust. Flame 121(2000) 210-222. [28] V.M. Zamansky, P.M. Maly, L. Ho, M.S. Sheldon, D. Moyeda, B.A. Folsom, W.R. Seeker, W.C. Gardiner Jr., V.V. Lissianski, Second generation advanced reburning for high efficiency NOx control, Phase 1, Final Report, Energy and Environmental Research Co, Irvine, CA, 1997. [29] A. Burcat, Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables, http://garfield.chem.elte.hu/Burcat/burcat.html. [30] A. Abdel-Kader, A.A. Ammar, S.I. Saleh, Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25-600℃, Thermochim. Acta 176(1991) 293-304. [31] H.P. Jiang, M.S. Bi, B. Li, D.W. Zhang, W. Gao, Inhibition evaluation of ABC powder in aluminum dust explosion, J. Hazard. Mater. 361(2019) 273-282. |