[1] S.K. Kailasa, S. Ha, S.H. Baek, L.M.T. Kim, S. Phan, K. Kwak, T.J. Park, Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications, Mater. Sci. Eng. C 98(2019) 834-842. [2] H. Lu, W. Li, H. Dong, M. Wei, Graphene quantum dots for optical bioimaging, Small 15(2019) 1902136. [3] M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, S. Tao, J. Liu, B. Yang, Recent progress on the photocatalysis of carbon dots:Classification, mechanism and applications, Nano Today 19(2018) 201-218. [4] P. Das, S. Ganguly, M. Bose, S. Mondal, S. Choudhary, S. Gangopadhyay, A.K. Das, S. Banerjee, N.C. Das, Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and fenton based bio-sensor, Mater. Sci. Eng. C 88(2018) 115-129. [5] X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications, TRACTRAC-Trend Anal. Chem. 89(2017) 163-180. [6] Q. Zhao, S. Wang, Y. Yang, X. Li, D. Di, C. Zhang, T. Jiang, S. Wang, Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzymetriggered targeted drug delivery and bioimaging, Mater. Sci. Eng., C 78(2017) 475-484. [7] J. Du, N. Xu, J. Fan, W. Sun, X. Peng, Carbon dots for in vivo bioimaging and theranostics, Small 15(2019) 1805087. [8] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126(2004) 12736-12737. [9] Y. Fu, S. Wu, H. Zhou, S. Zhao, M. Lan, J. Huang, X. Song, Carbon dots and a CdTe quantum dot hybrid-based fluorometric probe for spermine detection, Ind. Eng. Chem. Res. 59(2020) 1723-1729. [10] M. Lan, S. Zhao, S. Wu, X. Wei, Y. Fu, J. Wu, P. Wang, W. Zhang, Optically tunable fluorescent carbon nanoparticles and their application in fluorometric sensing of copper ions, Nano Res. 12(2019) 2576-2583. [11] H. Liu, J. Ding, K. Zhang, L. Ding, Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis, TRAC-Trend Anal. Chem. 118(2019) 315-337. [12] Y. Fu, S. Zhao, S. Wu, L. Huang, T. Xu, X. Xing, M. Lan, X. Song, A carbon dotsbased fluorescent probe for turn-on sensing of ampicillin, Dyes Pigm. 172(2020) 107846. [13] X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, Z. Sun, Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization, Adv. Mater. 30(2018) 1704740. [14] H. Wu, Y. Chen, X. Dai, P. Li, J. Stoddart, Y. Liu, In situ photoconversion of multicolor luminescence and pure white light emission based on carbon dotsupported supramolecular assembly, J. Am. Chem. Soc. 141(2019) 6583-6591. [15] Q. Li, M. Zhou, M. Yang, Q. Yang, Z. Zhang, J. Shi, Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices, Nat. Commu. 9(2018) 734. [16] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots):Current state and future perspective, Nano Res. 8(2015) 355-381. [17] H.A. Nguyen, I. Srivastava, D. Pan, M. Gruebele, Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution, ACS Nano 14(2020) 6127-6137. [18] M. Lan, S. Zhao, W. Liu, C.-S. Lee, W. Zhang, P. Wang, Photosensitizers for photodynamic therapy, Adv. Healthcare Mater. 8(2019) 1900132. [19] J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging, Mater. Sci. Eng., C 76(2017) 856-8644. [20] S. Sun, J. Chen, K. Jiang, Z. Tang, Y. Wang, Z. Li, C. Liu, A. Wu, H. Lin, Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-lasertriggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power, ACS Appl. Mater. Interfaces 11(2019) 5791-5803. [21] J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, X. Meng, P. Wang, C.-S. Lee, W. Zhang, X. Han, A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation, Nat. Commun. 5(2014) 4596. [22] J. Ge, Q. Jia, W. Liu, M. Lan, B. Zhou, L. Guo, H. Zhou, H. Zhang, Y. Wang, Y. Gu, X. Meng, P. Wang, Carbon dots as cancer theranostic for imaging-guided, red light-triggered photodynamic-photothermal simultaneous therapy, Adv. Healthcare Mater. 5(2016) 665-675. [23] J. Ge, Q. Jia, W. Liu, L. Guo, Q. Liu, M. Lan, H. Zhang, X. Meng, P. Wang, Redemissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice, Adv. Mater. 27(2015) 4169-4177. [24] M. Lan, S. Zhao, Z. Zhang, L. Yan, L. Guo, G. Niu, J. Zhang, J. Zhao, H. Zhang, P. Wang, G. Zhu, C.-S. Lee, W. Zhang, Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy, Nano Res. 10(2017) 3113-3123. [25] M. Lan, L. Guo, S. Zhao, Z. Zhang, Q. Jia, L. Yan, J. Xia, H. Zhang, P. Wang, W. Zhang, Carbon dots as multifunctional phototheranostic agent for photoacoustic/fluorescence imaging and photothermal/photodynamic synergistic cancer therapy, Adv. Therap. 1(2018) 201800077. [26] S. Zhao, S. Wu, Q. Jia, L. Huang, M. Lan, P. Wang, W. Zhang, Lysosometargetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging, Chem. Eng. J. 388(2020) 124212. [27] H.A. Herner, J.E. Trosko, S.J. Masten, The epigenetic toxicity of pyrene and related ozonation byproducts containing an aldehyde functional group, Environ. Sci. Technol. 35(2001) 3576-3583. [28] J. Ge, M. Lan, W. Liu, Q. Jia, L. Guo, B. Zhou, X. Meng, G. Niu, P. Wang, Graphene quantum dots as efficient, metal-free, visible-light-active photocatalysts, Sci. China Mater. 59(2016) 12-19. [29] H.E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Graphene materials in antimicrobial nanomedicine:Current status and future perspectives, Adv. Healthcare Mater. 7(2018) 1701406. [30] Y. Zhang, W. Liu, Y. Li, Y.-W. Yang, A. Dong, Y. Li, 2D graphdiyne oxide serves as a superior new generation of antibacterial agents, iScience 19(2019) 662-675. [31] X. Dong, W. Liang, M.J. Meziani, Y.-P. Sun, L. Yang, Carbon dots as potent antimicrobial agents, Theranostics 10(2020) 671-686. [32] B. Cui, L. Feng, C. Wang, D. Yang, M. Yu, Z. Zeng, Y. Wang, C. Sun, H. Cui, Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization, PLoS ONE 11(2016) 0160877. [33] B. Cui, L. Feng, Z. Pan, M. Yu, Z. Zeng, C. Sun, X. Zhao, Y. Wang, H. Cui, Evaluation of stability and biological activity of solid nanodispersion of lambda-cyhalothrin, PLoS ONE 10(2015) 0135953. [34] S. Kumar, M. Nehra, N. Dilbaghi, G. Marrazza, A.A. Hassan, K.-H. Kim, Nanobased smart pesticide formulations:Emerging opportunities for agriculture, J. Control. Release 294(2019) 131-153. [35] Y. Xiang, G. Zhang, C. Chen, B. Liu, D. Cai, Z. Wu, Fabrication a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel, ACS Sustainable Chem. Eng. 6(2018) 1192-1201. [36] Y. Chi, G. Zhang, Y. Xiang, D. Cai, Z. Wu, Fabrication of a temperaturecontrolled-release herbicide using a nanocomposite, ACS Sustainable Chem. Eng. 5(2017) 4969-4975. [37] P. Zhao, L. Cao, D. Ma, Z. Zhou, Q. Huang, C. Pan, Synthesis of pyrimethanilloaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants, Molecules 22(2017) 817. [38] S. Wu, X. Yang, Y. Lu, Z. Fan, Y. Li, Y. Jiang, Z. Hou, A green approach to dualdrug nanoformulations with targeting and synergistic effects for cancer therapy, Drug Deliv. 24(2017) 51-60. [39] J. Wilhelm, M. Quiñones-Pérez, J. Wang, X.u. Wang, V.S. Basava, J. Gao, Antigen folding improves loading efficiency and antitumor efficacy of PC7A nanoparticle vaccine, J. Control. Rel. 329(2021) 353-360. [40] X. Sun, J. He, S. Yang, M. Zheng, Y. Wang, S. Ma, H. Zheng, Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging, J. Photoch. Photobio. B 175(2017) 219-225. [41] X. Deng, P. Zhao, X. Zhou, L. Bai, Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks, Chem. Eng. J. 405(2021) 126979. [42] X. Deng, W. Zheng, C. Jin, L. Bai, Synthesis of novel 6-Aryloxy-4-chloro-2-phenylpyrimidines as Fungicides and Herbicide Safeners, ACS Omega 5(2020) 23996-24004. [43] S. Liu, X. Deng, L. Bai, Developmental toxicity and transcriptome analysis of zebrafish (Danio rerio) embryos following exposure to chiral herbicide safener benoxacor, Sci. Total Environ. 761(2021) 143273. [44] P. Zhang, A. Guan, X. Xia, X. Sun, S. Wei, J. Yang, J. Wang, Z. Li, J. Lan, C. Liu, Design, synthesis, and structure-activity relationship of new arylpyrazole pyrimidine ether derivatives as fungicides, J. Agric. Food Chem. 67(2019) 11893-11900. [45] Y.-J. Li, S.G. Harroun, Y.-C. Su, C.-F. Huang, B. Unnikrishnan, H.-J. Lin, C.-H. Lin, C.-C. Huang, Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria, Adv. Healthcare Mater. 5(2016) 2545-2554. [46] H. Li, J. Huang, Y. Song, M. Zhang, H. Wang, F. Lu, H. Huang, Y. Liu, X. Dai, Z. Gu, Z. Yang, R. Zhou, Z. Kang, Degradable carbon dots with broad-spectrum antibacterial activity, ACS Appl. Mater. Interfaces 10(2018) 26936-26946. |