[1] P. Sudarsanam, R. Zhong, S. Van den Bosch, S. M. Coman, V. I. Parvulescu, B. F. Sels, Functionalised heterogeneous catalysts for sustainable biomass valorisation, Chem. Soc. Rev. 47 (2018) 8349-8402 [2] G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science 308 (2005) 1446 [3] A. J. Kumalaputri, G. Bottari, P. M. Erne, H. J. Heeres, K. Barta, Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides, ChemSusChem 7 (2014) 2266 [4] E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba, M. Hara, Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, J. Am. Chem. Soc. 141 (2019) 890-900 [5] J. Tan, J. Cui, Y. Zhu, X. Cui, Y. Shi, W. Yan, Y. Zhao, Complete aqueous hydrogenation of 5-hydroxymethylfurfural at room temperature over bimetallic RuPd/graphene catalyst, ACS Sustainable Chem. Eng. 7 (2019) 10670-10678 [6] J. Artz, S. Mallmann, R. Palkovits, Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts, ChemSusChem 8 (2015) 672-679 [7] B. Xiao, M. Zheng, X. Li, J. Pang, R. Sun, H. Wang, X. Pang, A. Wang, X. Wang, T. Zhang, Synthesis of 1,6-hexanediol from HMF over double-layered catalysts of Pd/SiO2+ Ir-ReOx/SiO2 in a fixed bed reactor, Green Chem. 18 (2016) 2175-2184 [8] X. Li, Q. Deng, S. Zhou, J. Zou, J. Wang, R. Wang, Z. Zeng, S. Deng, Double-metal cyanide-supported Pd catalysts for highly efficient hydrogenative ring-rearrangement of biomass-derived furanic aldehydes to cyclopentanone compounds, J. Catal. 378 (2019) 201-208 [9] J. N. Chheda, G. W. Huber, J. A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Angew. Chem. Int. Ed. 46 (2007) 7164-7183 [10] H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316 (2007) 1597-1600 [11] M. Moreno-Recio, J. Santamaría-González, P. Maireles-Torres, Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural, Chem. Eng. J. 303 (2016) 22-30 [12] G. Qiu, C. Huang, X. Sun, B. Chen, Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose, Green Chem. 21 (2019) 3930-3939 [13] Q. Hou, M. Zhen, W. Li, L. Liu, J. Liu, S. Zhang, Y. Nie, C. Bai, X. Bai, M. Ju, Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid, Appl. Catal. B 253 (2019) 1-10 [14] J. Zhao, C. Zhou, C. He, Y. Dai, X. Jia, Y. Yang, Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts, Catal. Today 264 (2016) 123-130 [15] C. Tian, C. Bao, A. Binder, Z. Zhu, B. Hu, Y. Guo, B. Zhao, S. Dai, An efficient and reusable "hairy" particle acid catalyst for the synthesis of 5-hydroxymethylfurfural from dehydration of fructose in water, Chem Comm 49 (2013) 8668-8670 [16] X. Qi, M. Watanabe, T. M. Aida,R. L. Smith Jr, Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating, Green Chem. 10 (2008) 799-805 [17] R. Liu, J. Chen, X. Huang, L. Chen, L. Ma, X. Li, Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials, Green Chem. 15 (2013) 2895-2903 [18] L. Cao, I. K. Yu, S. S. Chen, D. C. Tsang, L. Wang, X. Xiong, S. Zhang, Y. S. Ok, E. E. Kwon, H. Song, C. S. Poon, Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar, Bioresour. Technol. 252 (2018) 76-82 [19] G. Qiu, B. Chen, C. Huang, N. Liu, X. Sun, Tin-modified ionic liquid polymer:A novel and efficient catalyst for synthesis of 5-hydroxymethylfurfural from glucose, Fuel 268 (2020) 117136 [20] H. Tang, N. Li, G. Li, W. Wang, A. Wang, Y. Cong, X. Wang, Dehydration of carbohydrates to 5-hydroxymethylfurfural over lignosulfonate-based acidic resin, ACS Sustainable Chem. Eng. 6 (2018) 5645-5652 [21] K. A. Da Silva Rocha, J. L. Hoehne, E. V. Gusevskaya, Phosphotungstic acid as a versatile catalyst for the synthesis of fragrance compounds by α-pinene oxide isomerization:solvent-induced chemoselectivity, Chem. Eur. J. 14 (2018) 6166-72 [22] G. Morales, G. Athens, B. F. Chmelka, R. V. Grieken, J. A. Melero, Aqueous-sensitive reaction sites in sulfonic acid-functionalized mesoporous silicas, J Catal 254 (2008) 205-217 [23] L. Wang, H. Wang, F. Liu, A. Zheng, J. Zhang, Q. Sun, J. P. Lewis, L. Zhu, X. Meng, F. Xiao, Selective catalytic production of 5-hydroxymethylfurfural from glucose by adjusting catalyst wettability, ChemSusChem 7 (2014) 402-406 [24] H. Li, Y. Zhong, L. Wang, Q. Deng, J. Wang, Z. Zeng, X. Cao, S. Deng, Functionalized metal-organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural, Chinese J. Chem. Eng. 33 (2021) 167-174 [25] H. Miura, S. Kameyama, D. Komori, T. Shishido, Quantitative evaluation of the effect of the hydrophobicity of the environment surrounding Brønsted acid sites on their catalytic Activity for the hydrolysis of organic molecules, J. Am. Chem. Soc. 141 (2019) 1636-1645 [26] H. Li, Q. Deng, H. Chen, X. Cao, J. Zheng, Y. Zhong, P. Zhang, J. Wang, Z. Zeng, S. Deng, Benzenesulfonic acid functionalized hydrophobic mesoporous biochar as an efficient catalyst for the production of biofuel, Appl. Catal. A, Gen. 580 (2019) 178-185 [27] M. N. Gebresillase, R. Shavi, J. G. Seo, A comprehensive investigation of the condensation of furanic platform molecules to C14-C15 fuel precursors over sulfonic acid functionalized silica supports, Green Chem. 20 (2019) 5133-5146 [28] Y. Zhong, Q. Deng, P. Zhang, J. Wang, R. Wang, Z. Zeng, S. Deng, Sulfonic acid functionalized hydrophobic mesoporous biochar:Design, preparation and acid-catalytic properties, Fuel 240 (2019) 270-277 [29] Y. Zhong, P. Zhang, X. Zhu, H. Li, Q. Deng, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Highly efficient alkylation using hydrophobic sulfonic acid-functionalized biochar as a catalyst for synthesis of high density biofuels, ACS Sustainable Chem. Eng. 7 (2019) 14973-14981 [30] Y. Zhong, Q. Deng, Q. Yao, C. Lu, P. Zhang, H. Li, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Functionalized biochar with superacidity and hydrophobicity as a highly efficient catalyst in the synthesis of renewable high-density fuels, ACS Sustainable Chem. Eng. 8 (2020) 7785-7794 [31] J. M. Fraile, E. García-Bordejé, E. Pires, L. Roldán, Catalytic performance and deactivation of sulfonated hydrothermal carbon in the esterification of fatty acids:comparison with sulfonic solids of different nature, J Catal 324 (2015) 107-118 [32] M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi, A carbon material as a strong protonic acid, Angew Chem 43 (2004) 2955-2958 [33] K. Malins, V. Kampars, J. Brinks, I. Neibolte, R. Murnieks, Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation, Appl Catal B:Environ 176-177 (2015)553-558 [34] D. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J. Weselinski, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A. H. Emwas, M. Eddaoudi, MOF crystal chemistry paving the way to gas storage needs:Aluminum-based soc-MOF for CH4, O2, and CO2 storage, J. Am. Chem. Soc. 137 (2015) 13308-13318 [35] F. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T. L. Hu, M. O'Keeffe, L. Wang, M. Luo, R. B. Lin, B. Chen, UTSA-74:a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation, J. Am. Chem. Soc. 138 (2016) 5678-5684 [36] A. Terzopoulou,J. D. Nicholas,X.-Z. Chen,B. J. Nelson,S. Pané,J. Puigmartí-Luis, Metal-OrganicFrameworksin Motion, Chem. Rev.120 (2020) 11175-11193 [37] N. T. Nguyen, H. Furukawa, F. Gandara, C. A. Trickett, H. M. Jeong, K. E. Cordova, O. M. Yaghi, Three-dimensional metalcatecholate frameworks and their ultrahigh proton conductivity, J. Am. Chem. Soc. 137 (2015) 15394-15397 [38] J. M. Taylor, T. Komatsu, S. Dekura, K. Otsubo, M. Takata, H. Kitagawa, The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework, J. Am. Chem. Soc. 137 (2015) 11498-11506 [39] Y. Su, G. Chang, Z. Zhang, H. Xing, B. Su, Q. Yang, Q. Ren, Y. Yang, Z. Bao, Catalytic dehydration of glucose to 5-hydroxymethylfurfural with a bifunctional metal-organic framework, AIChE J. 62 (2016) 4403-4417 [40] J. Chen, K. Li, L. Chen, R. Liu, X. Huang, D. Ye, Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal-organic frameworks, Green Chem. 16 (2014) 2490-2499 [41] M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K. P. Lillerud, M. Tilset, Post-synthetic modification of the metal-organic framework compound UiO-66, J. Mater. Chem. 20 (2010) 9848-9851 [42] Y. Luan, Y. Qi, H. Gao, R.S. Andriamitantsoa, N. Zheng, G. Wang, A general post-synthetic modification approach of amino-tagged metal-organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction, J. Mater. Chem. A 3 (2015) 17320-17331 [43] M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem. Mater. 22 (2010) 6632-6640 [44] H. Hintz, S. Wuttke, Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents:a comparative study, Chem. Commun. 50 (2014) 11472-11475 [45] Z. Wang, K. K. Tanabe, S. M. Cohen, Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification, Chem. Eur. J. 16 (2010) 212-217 [46] H. Hintz, S. Wuttke, Solvent-free and time efficient postsynthetic modification of amino-tagged metal-organic frameworks with carboxylic acid derivatives, Chem. Mater. 26 (2014) 6722-6728 [47] V. V. Ordomsky, V. L. Sushkevich, J. C. Schouten, J. V. Der Schaaf, T. A. Nijhuis, Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts, J. Catal. 300 (2013) 37-46 [48] Y. Jin, J. Shi, F. Zhang, Y. Zhong, W. Zhu, Synthesis of sulfonic acid-functionalized MIL-101 for acetalization of aldehydes with diols, J. Mol. Catal. A Chem. 383 (2014) 167-171 [49] L. Ding, X. Luo, P. Shao, J. Yang, D. Sun, Thiol-functionalized Zr-based metal-organic framework for capture of Hg(II) through a proton exchange reaction, ACS Sustainable Chem. Eng. 6 (2018) 8494-8502 [50] X. Fu, Y. Hu, Y Zhang, Y. Zhang, D. Tang, L. Zhu, C. Hu, Solvent effects on degradative condensation side reactions of fructose in its initial conversion to 5-hydroxymethylfurfural, ChemSusChem 13 (2020) 501-512 |