中国化学工程学报 ›› 2022, Vol. 50 ›› Issue (10): 283-291.DOI: 10.1016/j.cjche.2022.07.029
• Catalysis, Kinetics and Reaction Engineering • 上一篇 下一篇
Lei Zhou1, Lingling Peng2, Xingbang Hu2
收稿日期:
2022-03-14
修回日期:
2022-07-19
出版日期:
2022-10-28
发布日期:
2023-01-04
通讯作者:
Xingbang Hu,E-mail:huxb@nju.edu.cn
基金资助:
Lei Zhou1, Lingling Peng2, Xingbang Hu2
Received:
2022-03-14
Revised:
2022-07-19
Online:
2022-10-28
Published:
2023-01-04
Contact:
Xingbang Hu,E-mail:huxb@nju.edu.cn
Supported by:
摘要: Recently, cyclic (alkyl)(amino)carbenes (CAACs) have been widely used as ligands to enhance the catalytic reactivity of center metal, but the problem of recycling this expensive ligand remains to be solved. In this work, the heterogeneous SBA-15-CAAC-Ir catalyst was prepared by a covalent attachment method, and using SBA-15 as the carrier. It shows high reactivity for the hydrogenation of CO2 to formate. After immobilization, the ordered mesoporous structure and the overall rod-like morphology of the original SBA-15 have been preserved very well. Using SBA-15-CAAC-Ir as catalyst, up to 21050 TON can be obtained at 60 ℃. In addition, the catalyst can be separated easily by centrifugation, and the catalytic activity of SBA-15-CAAC-Ir can still remain very high after multiple cycles.
Lei Zhou, Lingling Peng, Xingbang Hu. Hydrogenation of CO2 to formate catalyzed by SBA-15-supported cyclic (alkyl)(amino)carbene-iridium[J]. 中国化学工程学报, 2022, 50(10): 283-291.
Lei Zhou, Lingling Peng, Xingbang Hu. Hydrogenation of CO2 to formate catalyzed by SBA-15-supported cyclic (alkyl)(amino)carbene-iridium[J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 283-291.
[1] S. Enthaler, J. von Langermann, T. Schmidt, Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? Energy Environ. Sci. 3 (9) (2010) 1207. https://doi.org/10.1039/b907569k [2] J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Selective catalytic synthesis using the combination of carbon dioxide and hydrogen:Catalytic chess at the interface of energy and chemistry, Angew. Chem. Int. Ed Engl. 55 (26) (2016) 7296-7343. https://pubmed.ncbi.nlm.nih.gov/27237963/ [3] J.H. He, S.S. Chang, H.R. Du, B. Jiang, W.Z. Yu, Z.W. Wang, W.W. Chu, L.F. Han, J. Zhu, H.X. Li, Efficient hydrogenation of CO2 to formic acid over amorphous NiRuB catalysts, J. CO2 Util. 54 (2021) 101751. https://dx.doi.org/10.1016/j.jcou.2021.101751 [4] L. Zhou, L.L. Peng, J.L. Ji, W.T. Ma, J.L. Hu, Y.T. Wu, J. Geng, X.B. Hu, Cyclic (alkyl)(amino)carbene-copper supported on SBA-15 as an efficient and recyclable catalyst for CO2 hydrogenation to formate, J. CO2 Util. 58 (2022) 101910. https://dx.doi.org/10.1016/j.jcou.2022.101910 [5] A. Goeppert, M. Czaun, J.P. Jones, G.K. Surya Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products-closing the loop, Chem. Soc. Rev. 43 (23) (2014) 7995-8048. https://pubmed.ncbi.nlm.nih.gov/24935751/ [6] M.Chehrazia,B.K.Moghadas,AreviewonCO2capturewithchilledammoniaandCO2utilizationinureaplant, J.CO2Util.61(2022)102030. https://doi.org/10.1002/anie.202000841 [7] P. Verma, S.Y. Zhang, S.N. Song, K. Mori, Y. Kuwahara, M.C. Wen, H. Yamashita, T.C. An, Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst, J. CO2 Util. 54 (2021) 101765. https://dx.doi.org/10.1016/j.jcou.2021.101765 [8] X.Q. Yang, Q.Z. Zou, T.X. Zhao, P. Chen, Z.M. Liu, F. Liu, Q. Lin, Deep eutectic solvents as efficient catalysts for fixation of CO2 to cyclic carbonates at ambient temperature and pressure through synergetic catalysis, ACS Sustainable Chem. Eng. 9 (31) (2021) 10437-10443. https://doi.org/10.1021/acssuschemeng.1c03187 [9] Q. Zou, J. Chen, Y. Wang, J. Gu, F. Liu, T. Zhao, Synthesis of mesoporous PdxCu1-x/Al2O3-y bimetallic catalysts via mechanochemistry for selective n-formylation of amines with CO2 and H2, ACS Sustain. Chem. Eng. 9 (2021) 16153-16162 [10] S. Saeidi, N.A.S. Amin, M.R. Rahimpour, Hydrogenation of CO2 to value-added products-A review and potential future developments, J. CO2 Util. 5 (2014) 66-81. https://dx.doi.org/10.1016/j.jcou.2013.12.005 [11] R.P. Ye, J. Ding, W.B. Gong, M.D. Argyle, Q. Zhong, Y.J. Wang, C.K. Russell, Z.H. Xu, A.G. Russell, Q.H. Li, M.H. Fan, Y.G. Yao, CO2 hydrogenation to high-value products via heterogeneous catalysis, Nat. Commun. 10 (2019) 5698. https://doi.org/10.1038/s41467-019-13638-9 [12] W.H. Li, H.Z. Wang, X. Jiang, J. Zhu, Z.M. Liu, X.W. Guo, C.S. Song, A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts, RSC Adv. 8 (14) (2018) 7651-7669. https://doi.org/10.1039/c7ra13546g [13] Y.J. Shen, Q.S. Zheng, Z.N. Chen, D.H. Wen, J.H. Clark, X. Xu, T. Tu, Highly efficient and selective N-formylation of amines with CO 2 and H 2 catalyzed by porous organometallic polymers, Angew. Chem. Int. Ed. 60 (8) (2021) 4125-4132. https://doi.org/10.1002/anie.202011260 [14] S. Wesselbaum, T. Vom Stein, J. Klankermayer, W. Leitner, Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst, Angew. Chem. Int. Ed Engl. 51 (30) (2012) 7499-7502. https://pubmed.ncbi.nlm.nih.gov/22707348/ [15] M.M.J. Li, H.B. Zou, J.W. Zheng, T.S. Wu, T.S. Chan, Y.L. Soo, X.P. Wu, X.Q. Gong, T.Y. Chen, K. Roy, G. Held, S.C.E. Tsang, Methanol synthesis at a wide range of H 2/CO 2 ratios over a Rh-in bimetallic catalyst, Angew. Chem. Int. Ed. 59 (37) (2020) 16039-16046. https://doi.org/10.1002/anie.202000841 [16] D. Preti, C. Resta, S. Squarcialupi, G. Fachinetti, Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst, Angew. Chem. Int. Ed Engl. 50 (52) (2011) 12551-12554. https://pubmed.ncbi.nlm.nih.gov/22057843/ [17] R. Tanaka, M. Yamashita, K. Nozaki, Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes, J. Am. Chem. Soc. 131 (40) (2009) 14168-14169. https://pubmed.ncbi.nlm.nih.gov/19775157/ [18] T.J. Schmeier, G.E. Dobereiner, R.H. Crabtree, N. Hazari, Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst, J. Am. Chem. Soc. 133 (24) (2011) 9274-9277. https://pubmed.ncbi.nlm.nih.gov/21612297/ [19] J.F. Hull, Y. Himeda, W.H. Wang, B. Hashiguchi, R. Periana, D.J. Szalda, J.T. Muckerman, E. Fujita, Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures, Nat. Chem. 4 (5) (2012) 383-388. https://pubmed.ncbi.nlm.nih.gov/22522258/ [20] C. Liu, J.H. Xie, G.L. Tian, W. Li, Q.L. Zhou, Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(iii) complexes of imine-diphosphine ligands, Chem. Sci. 6 (5) (2015) 2928-2931. https://doi.org/10.1039/c5sc00248f [21] B. An, L.Z. Zeng, M. Jia, Z. Li, Z.K. Lin, Y. Song, Y. Zhou, J. Cheng, C. Wang, W.B. Lin, Molecular iridium complexes in metal-organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer, J. Am. Chem. Soc. 139 (49) (2017) 17747-17750. https://pubmed.ncbi.nlm.nih.gov/29179548/ [22] R. Kanega, N. Onishi, D.J. Szalda, M.Z. Ertem, J.T. Muckerman, E. Fujita, Y. Himeda, CO2 hydrogenation catalysts with deprotonated picolinamide ligands, ACS Catal. 7 (10) (2017) 6426-6429. https://doi.org/10.1021/acscatal.7b02280 [23] G.H. Gunasekar, K. Park, V. Ganesan, K. Lee, N.K. Kim, K.D. Jung, S. Yoon, A covalent triazine framework, functionalized with Ir/N-heterocyclic carbene sites, for the efficient hydrogenation of CO2 to formate, Chem. Mater. 29 (16) (2017) 6740-6748. https://doi.org/10.1021/acs.chemmater.7b01539 [24] X.Z. Shao, X.F. Yang, J.M. Xu, S. Liu, S. Miao, X.Y. Liu, X. Su, H.M. Duan, Y.Q. Huang, T. Zhang, Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate, Chem 5 (3) (2019) 693-705. https://dx.doi.org/10.1016/j.chempr.2018.12.014 [25] T. Burgemeister, F. Kastner, W. Leitner,[(PP2)RhH] and[(PP2)Rh] [O2CH]complexes as models for the catalytically active intermediates in the Rh-catalyzed hydrogenation of CO2 to HCOOH, Angew. Chem. Int. Ed. Engl. 32 (5) (1993) 739-741. https://doi.org/10.1002/anie.199307391 [26] F. Hutschka, A. Dedieu, M. Eichberger, R. Fornika, W. Leitner, Mechanistic aspects of the rhodium-catalyzed hydrogenation of CO2 to formic AcidA theoretical and kinetic study, J. Am. Chem. Soc. 119 (19) (1997) 4432-4443. https://doi.org/10.1021/ja961579x [27] Y.N. Li, L.N. He, A.H. Liu, X.D. Lang, Z.Z. Yang, B. Yu, C.R. Luan, In situ hydrogenation of captured CO2 to formate with polyethyleneimine and Rh/monophosphine system, Green Chem. 15 (10) (2013) 2825. https://doi.org/10.1039/c3gc41265b [28] A. Anaby, M. Feller, Y. Ben-David, G. Leitus, Y. Diskin-Posner, L.J.W. Shimon, D. Milstein, Bottom-up construction of a CO2-based cycle for the photocarbonylation of benzene, promoted by a rhodium(I) pincer complex, J. Am. Chem. Soc. 138 (31) (2016) 9941-9950. https://doi.org/10.1021/jacs.6b05128 [29] Q.L. Qian, J.J. Zhang, M. Cui, B.X. Han, Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2, Nat. Commun. 7 (2016) 11481. https://pubmed.ncbi.nlm.nih.gov/27165850/ [30] Y. Musashi, S. Sakaki, Theoretical study of ruthenium-catalyzed hydrogenation of carbon dioxide into formic acid. reaction mechanism involving a new type of σ-bond metathesis, J. Am. Chem. Soc. 122 (16) (2000) 3867-3877. https://doi.org/10.1021/ja9938027 [31] J. Elek, L. Nádasdi, G. Papp, G. Laurenczy, F. Joó, Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes, Appl. Catal. A Gen. 255 (1) (2003) 59-67. https://dx.doi.org/10.1016/S0926-860X(03)00644-6 [32] Hayashi H, Ogo S, Fukuzumi S, Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions, Chem. Commun. (Camb) (23) (2004) 2714-2715. https://pubmed.ncbi.nlm.nih.gov/15568081/ [33] T. Schaub, R.A. Paciello, A process for the synthesis of formic acid by CO2 hydrogenation:Thermodynamic aspects and the role of CO, Angew. Chem. Int. Ed Engl. 50 (32) (2011) 7278-7282. https://pubmed.ncbi.nlm.nih.gov/21710511/ [34] S. Bontemps, L. Vendier, S. Sabo-Etienne, Borane-mediated carbon dioxide reduction at ruthenium:Formation of C1 and C2 compounds, Angew. Chem. Int. Ed Engl. 51 (7) (2012) 1671-1674. https://pubmed.ncbi.nlm.nih.gov/22241554/ [35] C.A. Huff, M.S. Sanford, Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex, ACS Catal. 3 (10) (2013) 2412-2416. https://doi.org/10.1021/cs400609u [36] S. Moret, P.J. Dyson, G. Laurenczy, Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media, Nat Commun 5 (2014) 4017. https://pubmed.ncbi.nlm.nih.gov/24886955/ [37] R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible-light-driven CO2 reduction with carbon nitride:Enhancing the activity of ruthenium catalysts, Angew. Chem. Int. Ed Engl. 54 (8) (2015) 2406-2409. https://pubmed.ncbi.nlm.nih.gov/25565575/ [38] N.M. Rezayee, C.A. Huff, M.S. Sanford, Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol, J. Am. Chem. Soc. 137 (3) (2015) 1028-1031. https://pubmed.ncbi.nlm.nih.gov/25594380/ [39] K. Rohmann, J. Kothe, M.W. Haenel, U. Englert, M. Hölscher, W. Leitner, Hydrogenation of CO2 to formic acid with a highly active ruthenium acriphos complex in DMSO and DMSO/water, Angew. Chem. Int. Ed Engl. 55 (31) (2016) 8966-8969. https://pubmed.ncbi.nlm.nih.gov/27356513/ [40] J. Kothandaraman, A. Goeppert, M. Czaun, G.A. Olah, G.K.S. Prakash, Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst, J. Am. Chem. Soc. 138 (3) (2016) 778-781. https://doi.org/10.1021/jacs.5b12354 [41] A. Weilhard, M.I. Qadir, V. Sans, J. Dupont, Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids, ACS Catal. 8 (3) (2018) 1628-1634. https://doi.org/10.1021/acscatal.7b03931 [42] Z.H. Li, T.M. Rayder, L.S. Luo, J.A. Byers, C.K. Tsung, Aperture-opening encapsulation of a transition metal catalyst in a metal-organic framework for CO2 hydrogenation, J. Am. Chem. Soc. 140 (26) (2018) 8082-8085. https://pubmed.ncbi.nlm.nih.gov/29909631/ [43] A. Kann, H. Hartmann, A. Besmehn, P.J.C. Hausoul, R. Palkovits, Hydrogenation of CO2 to formate over ruthenium immobilized on solid molecular phosphines, ChemSusChem 11 (11) (2018) 1857-1865. https://doi.org/10.1002/cssc.201800413 [44] F. Bertini, M. Glatz, N. Gorgas, B. Stöger, M. Peruzzini, L.F. Veiros, K. Kirchner, L. Gonsalvi, Carbon dioxide hydrogenation catalysed by well-defined Mn(i) PNP pincer hydride complexes, Chem. Sci. 8 (7) (2017) 5024-5029. https://pubmed.ncbi.nlm.nih.gov/28970889/ [45] A. Dubey, L. Nencini, R.R. Fayzullin, C. Nervi, J.R. Khusnutdinova, Bio-inspired Mn(I) complexes for the hydrogenation of CO2 to formate and formamide, ACS Catal. 7 (6) (2017) 3864-3868. https://doi.org/10.1021/acscatal.7b00943 [46] S. Kar, A. Goeppert, J. Kothandaraman, G.K.S. Prakash, Manganese-catalyzed sequential hydrogenation of CO2 to methanol via formamide, ACS Catal. 7 (9) (2017) 6347-6351. https://doi.org/10.1021/acscatal.7b02066 [47] C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P.J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides, Angew. Chem. Int. Ed Engl. 49 (50) (2010) 9777-9780. https://pubmed.ncbi.nlm.nih.gov/21069647/ [48] R. Langer, Y. Diskin-Posner, G. Leitus, L.J.W. Shimon, Y. Ben-David, D. Milstein, Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity, Angewandte Chemie Int. Ed. 50 (42) (2011) 9948-9952. https://dx.doi.org/10.1002/anie.201104542 [49] C. Ziebart, C. Federsel, P. Anbarasan, R. Jackstell, W. Baumann, A. Spannenberg, M. Beller, Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate, J. Am. Chem. Soc. 134 (51) (2012) 20701-20704. https://pubmed.ncbi.nlm.nih.gov/23171468/ [50] Y.Y. Zhang, A.D. MacIntosh, J.L. Wong, E.A. Bielinski, P.G. Williard, B.Q. Mercado, N. Hazari, W.H. Bernskoetter, Iron catalyzed CO2hydrogenation to formate enhanced by Lewis acid co-catalysts, Chem. Sci. 6 (7) (2015) 4291-4299. https://doi.org/10.1039/c5sc01467k [51] M.S. Jeletic, M.T. Mock, A.M. Appel, J.C. Linehan, A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions, J. Am. Chem. Soc. 135 (31) (2013) 11533-11536. https://pubmed.ncbi.nlm.nih.gov/23869651/ [52] J. Schneidewind, R. Adam, W. Baumann, R. Jackstell, M. Beller, Low-temperature hydrogenation of carbon dioxide to methanol with a homogeneous cobalt catalyst, Angew. Chem. Int. Ed Engl. 56 (7) (2017) 1890-1893. https://pubmed.ncbi.nlm.nih.gov/28078748/ [53] R. Watari, Y. Kayaki, S.I. Hirano, N. Matsumoto, T. Ikariya, Hydrogenation of carbon dioxide to formate catalyzed by a copper/1, 8-diazabicyclo[5.4.0]undec-7-ene system, Adv. Synth. Catal. 357 (7) (2015) 1369-1373. https://doi.org/10.1002/adsc.201500043 [54] C.M. Zall, J.C. Linehan, A.M. Appel, A molecular copper catalyst for hydrogenation of CO2 to formate, ACS Catal. 5 (9) (2015) 5301-5305. https://doi.org/10.1021/acscatal.5b01646 [55] C.M. Zall, J.C. Linehan, A.M. Appel, Triphosphine-ligated copper hydrides for CO2 hydrogenation:Structure, reactivity, and thermodynamic studies, J. Am. Chem. Soc. 138 (31) (2016) 9968-9977. https://pubmed.ncbi.nlm.nih.gov/27434540/ [56] E.A. Romero, T.X. Zhao, R. Nakano, X.B. Hu, Y.T. Wu, R. Jazzar, G. Bertrand, Tandem copper hydride-Lewis pair catalysed reduction of carbon dioxide into formate with dihydrogen, Nat. Catal. 1 (10) (2018) 743-747. https://doi.org/10.1038/s41929-018-0140-3 [57] J.L. Hu, J. Liu, C.F. Yao, L. Zhou, Y.T. Wu, Z.B. Zhang, X.B. Hu, Effective hydrogenation of CO2 to formate catalyzed by ionic liquid modified acetate-Cu, Green Chem. 23 (2) (2021) 951-956. https://doi.org/10.1039/d0gc03502e [58] G.X. Yang, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, Pd-Cu alloy nanoparticles confined within mesoporous hollow carbon spheres for the hydrogenation of CO2 to formate, J. Phys. Chem. C 125 (7) (2021) 3961-3971. https://doi.org/10.1021/acs.jpcc.0c10962 [59] C.L. Chiang, K.S. Lin, H.W. Chuang, Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst, J. Clean. Prod. 172 (2018) 1957-1977. https://dx.doi.org/10.1016/j.jclepro.2017.11.229 [60] X. Su, X.F. Yang, Y.Q. Huang, B. Liu, T. Zhang, Single-atom catalysis toward efficient CO2 conversion to CO and formate products, Acc. Chem. Res. 52 (3) (2019) 656-664. https://doi.org/10.1021/acs.accounts.8b00478 [61] V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts:A quaternary carbon atom makes the difference, Angew. Chem. Int. Ed Engl. 44 (35) (2005) 5705-5709. https://pubmed.ncbi.nlm.nih.gov/16059961/ [62] J.X. Chu, D. Munz, R. Jazzar, M. Melaimi, G. Bertrand, Synthesis of hemilabile cyclic (alkyl)(amino)carbenes (CAACs) and applications in organometallic chemistry, J. Am. Chem. Soc. 138 (25) (2016) 7884-7887. https://pubmed.ncbi.nlm.nih.gov/27304485/ [63] B.L. Tran, J.L. Fulton, J.C. Linehan, J.A. Lercher, R.M. Bullock, Rh(CAAC)-catalyzed arene hydrogenation:Evidence for nanocatalysis and sterically controlled site-selective hydrogenation, ACS Catal. 8 (9) (2018) 8441-8449. https://doi.org/10.1021/acscatal.8b02589 [64] L. Zhou, D.J. Zhang, J.L. Hu, Y.T. Wu, J. Geng, X.B. Hu, Thermal dehydrogenation and hydrolysis of BH3NH3 catalyzed by cyclic (alkyl)(amino)carbene iridium complexes under mild conditions, Organometallics 40 (15) (2021) 2643-2650. https://doi.org/10.1021/acs.organomet.1c00302 [65] L. Zhou, C.F. Yao, W.T. Ma, J.L. Hu, Y.T. Wu, Z.B. Zhang, X.B. Hu, CO2 hydrogenation to formate catalyzed by highly stable and recyclable carbene-iridium under mild condition, J. CO2 Util. 54 (2021) 101769. https://dx.doi.org/10.1016/j.jcou.2021.101769 [66] A.E. Samkian, Y. Xu, S.C. Virgil, K.Y. Yoon, R.H. Grubbs, Synthesis and activity of six-membered cyclic alkyl amino carbene-ruthenium olefin metathesis catalysts, Organometallics 39 (4) (2020) 495-499. https://doi.org/10.1021/acs.organomet.9b00862 [67] M. Bhunia, S.R. Sahoo, G. Vijaykumar, D. Adhikari, S.K. Mandal, Cyclic (alkyl)amino carbene based iron catalyst for regioselective dimerization of terminal arylalkynes, Organometallics 35 (21) (2016) 3775-3780. https://doi.org/10.1021/acs.organomet.6b00703 [68] V. Lavallo, G.D. Frey, S. Kousar, B. Donnadieu, G. Bertrand, Allene formation by gold catalyzed cross-coupling of masked carbenes and vinylidenes, Proc. Natl. Acad. Sci. USA 104 (34) (2007) 13569-13573. https://pubmed.ncbi.nlm.nih.gov/17698808/ [69] B.L. Tran, J.L. Fulton, J.C. Linehan, M. Balasubramanian, J.A. Lercher, R.M. Bullock, Operando XAFS studies on Rh(CAAC)-catalyzed arene hydrogenation, ACS Catal. 9 (5) (2019) 4106-4114. https://doi.org/10.1021/acscatal.8b04929 [70] M. Ramanathan, S.R. Boovarahan, S. Gandhi, G.A. Kurian, Synthesis and characterization of mesoporous silica SBA 15 improved the efficacy of CORM-2 against hypoxia reoxygenation injury, J. Porous Mater. 28 (6) (2021) 1969-1977. https://dx.doi.org/10.1007/s10934-021-01132-x [71] W. Anutrasakda, P. Pitakjakpipop, Performances of mesoporous silica-supported nickel phosphide nanocatalysts in the one-pot transformation of cellobiose to sorbitol, Catal. Today 375 (2021) 216-224. https://dx.doi.org/10.1016/j.cattod.2020.02.025 [72] R. Dawson, T. Ratvijitvech, M. Corker, A. Laybourn, Y.Z. Khimyak, A.I. Cooper, D.J. Adams, Microporous copolymers for increased gas selectivity, Polym. Chem. 3 (8) (2012) 2034. https://doi.org/10.1039/c2py20136d [73] K.Q. Yu, C.W. Jones, Silica-immobilized zinc β-diiminate catalysts for the copolymerization of epoxides and carbon dioxide, Organometallics 22 (13) (2003) 2571-2580. https://doi.org/10.1021/om030209w [74] L. Huang, X.W. Yan, M. Kruk, Synthesis of ultralarge-pore FDU-12 silica with face-centered cubic structure, Langmuir 26 (18) (2010) 14871-14878. https://pubmed.ncbi.nlm.nih.gov/20726611/ [75] Q. Liu, H. Dong, In situ immobilizing ni nanoparticles to fdu-12 via trehalose with fine size and location control for CO2 methanation, ACS Sustain. Chem. Eng. 8 (2020) 2093-2105 [76] R.X. Jin, M. Peng, A. Li, Y.C. Deng, Z.M. Jia, F. Huang, Y.J. Ling, F. Yang, H. Fu, J.L. Xie, X.D. Han, D.Q. Xiao, Z. Jiang, H.Y. Liu, D. Ma, Low temperature oxidation of ethane to oxygenates by oxygen over iridium-cluster catalysts, J. Am. Chem. Soc. 141 (48) (2019) 18921-18925. https://doi.org/10.1021/jacs.9b06986 [77] C. Calabrese, V. Campisciano, F. Siragusa, L.F. Liotta, C. Aprile, M. Gruttadauria, F. Giacalone, SBA-15/POSS-imidazolium hybrid as catalytic nanoreactor:The role of the support in the stabilization of palladium species for C-C cross coupling reactions, Adv. Synth. Catal. 361 (16) (2019) 3758-3767. https://doi.org/10.1002/adsc.201900350 [78] E.S. Wiedner, J.C. Linehan, Making a splash in homogeneous CO2 hydrogenation:Elucidating the impact of solvent on catalytic mechanisms, Chem. A Eur. J. 24 (64) (2018) 16964-16971. https://dx.doi.org/10.1002/chem.201801759 [79] J. Hu, Q. J. Bruch, A. J. M. Miller, Temperature and solvent effects on H2 splitting and hydricity:Ramifications on CO2 hydrogenation by a rhenium pincer catalyst, J. Am. Chem. Soc. 143 (2021) 945-954 |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release[J]. 中国化学工程学报, 2023, 60(8): 37-45. |
[2] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[3] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
[4] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[5] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone[J]. 中国化学工程学报, 2023, 57(5): 79-87. |
[6] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites[J]. 中国化学工程学报, 2023, 57(5): 141-150. |
[7] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface[J]. 中国化学工程学报, 2023, 56(4): 266-272. |
[8] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s[J]. 中国化学工程学报, 2023, 55(3): 202-211. |
[9] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2[J]. 中国化学工程学报, 2023, 55(3): 212-221. |
[10] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation[J]. 中国化学工程学报, 2023, 55(3): 222-229. |
[11] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption[J]. 中国化学工程学报, 2023, 54(2): 36-43. |
[12] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations[J]. 中国化学工程学报, 2023, 54(2): 206-214. |
[13] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS)[J]. 中国化学工程学报, 2023, 54(2): 215-231. |
[14] | Eid H. Alosaimi, Ibrahim Hotan Alsohaimi, Hassan M.A. Hassan, Qiao Chen, Saad Melhi, Ayman Abdelaziz Younes. Towards superior permeability and antifouling performance of sulfonated polyethersulfone ultrafiltration membranes modified with sulfopropyl methacrylate functionalized SBA-15[J]. 中国化学工程学报, 2023, 53(1): 89-100. |
[15] | Lu Lv, Min Zhao, Yanan Liu, Yufei He, Dianqing Li. Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via P-O-Al bond for liquid hydrogenation reaction[J]. 中国化学工程学报, 2023, 53(1): 232-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||