[1] A. Budiman, T.I. Arifta, diana Diana, S. Sutijan, Continuous production of α-terpineol from α-pinene isolated from Indonesian crude turpentine, Mod. Appl. Sci. 9 (4) (2015) 225. [2] K. Li, J. Liggio, P. Lee, C. Han, Q.F. Liu, S.M. Li, Secondary organic aerosol formation from α-pinene, alkanes, and oil-sands-related precursors in a new oxidation flow reactor, Atmos. Chem. Phys. 19 (15) (2019) 9715-9731. [3] C.J.A. Ribeiro, M.M. Pereira, E.F. Kozhevnikova, I.V. Kozhevnikov, E.V. Gusevskaya, K.A. da Silva Rocha, Heteropoly acid catalysts in upgrading of biorenewables:Synthesis of Para-menthenic fragrance compounds from α-pinene oxide, Catal. Today 344 (2020) 166-170. [4] G.S. Lin, X. Bai, W.G. Duan, B. Cen, M. Huang, S.Z. Lu, High value-added application of sustainable natural forest product α-pinene:Synthesis of myrtenal oxime esters as potential KARI inhibitors, ACS Sustainable Chem. Eng. 7 (8) (2019) 7862-7868. [5] N. Wijayati, E. Kusumastuti, D. Alighiri, B. Rohmawati, R. A. Lusiana, Heterogeneous zeolite-based catalyst for esterification of α-pinene to α-terpinyl acetate, Orient. J. Chem. 35 (1) (2019) 399 [6] E. Faujdar, H. Negi, R.K. Singh, V.K. Varshney, Study on biodegradable poly(α-olefins-co-α-pinene) architectures as pour point depressant and viscosity index improver additive for lubricating oils, J. Polym. Environ. 28 (11) (2020) 3019-3027. [7] V.V. Fomenko, S.S. Laev, N.F. Salakhutdinov, Catalytic epoxidation of 3-carene and limonene with aqueous hydrogen peroxide, and selective synthesis of α-pinene epoxide from turpentine, Catalysts 11 (4) (2021) 436. [8] P.P. Tao, X.H. Lu, H.F. Zhang, R. Jing, F.F. Huang, S. Wu, D. Zhou, Q.H. Xia, Enhanced activity of microwave-activated CoOx/MOR catalyst for the epoxidation of α-pinene with air, Mol. Catal. 463 (2019) 8-15. [9] J. Meyer-Waßewitz, D. Elyorgun, C. Conradi, A. Drews, Dynamic modeling of the chemo-enzymatic epoxidation of α-pinene and prediction of continuous process performance, Chem. Eng. Res. Des. 134 (2018) 463-475. [10] S.W. Liu, L. Zhou, S.T. Yu, C.X. Xie, F.S. Liu, Z.Q. Song, Polymerization of α-pinene using Lewis acidic ionic liquid as catalyst for production of terpene resin, Biomass Bioenergy 57 (2013) 238-242. [11] D.L. Trumbo, C.L. Giddings, L.R.A. Wilson, Terpene-anhydride resins as coating materials, J. Appl. Polym. Sci. 58 (1) (1995) 69-76. [12] B.J. Mehta, N. Krishnaswamy, Synthetic ion exchange resins from α-pinene, J. Appl. Polym. Sci. 18 (5) (1974) 1585. [13] A.L.P. de Meireles, K.A. da Silva Rocha, I.V. Kozhevnikov, E.V. Gusevskaya, Esterification of camphene over heterogeneous heteropoly acid catalysts:Synthesis of isobornyl carboxylates, Appl. Catal. A Gen. 409-410 (2011) 82-86. [14] Y.W. Moon, K.H. Shin, Y.H. Koh, S.W. Yook, C.M. Han, H.E. Kim, Novel ceramic/camphene-based co-extrusion for highly aligned porous alumina ceramic tubes, J. Am. Ceram. Soc. 95 (6) (2012) 1803-1806. [15] A. Mukai, K. Takahashi, T. Ashitani, Natural autoxidation of longifolene and anti-termite activities of the products, J. Wood Sci. 63 (4) (2017) 360-368. [16] X.P. Liu, W. Chen, Q.X. Liu, J.G. Dai, Abietic acid suppresses non-small-cell lung cancer cell growth via blocking IKKβ/NF-κB signaling, Onco. Targets Ther. 12 (2019) 4825-4837. [17] V. Cuzzucoli Crucitti, L.M. Migneco, A. Piozzi, V. Taresco, M. Garnett, R.H. Argent, I. Francolini, Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties, Eur. J. Pharm. Biopharm. 125 (2018) 114-123. [18] Y. Ito, T. Ito, K. Yamashiro, F. Mineshiba, K. Hirai, K. Omori, T. Yamamoto, S. Takashiba, Antimicrobial and antibiofilm effects of abietic acid on cariogenic Streptococcus mutans, Odontology 108 (1) (2020) 57-65. [19] R. Tanaka, H. Tokuda, Y. Ezaki, Cancer chemopreventive activity of "rosin" constituents of Pinus spez. and their derivatives in two-stage mouse skin carcinogenesis test, Phytomedicine 15 (11) (2008) 985-992. [20] E. Wenkert, J.R. Mahajan, M. Nussim, F. Schenker, Conversion of neoabietic acid into manool, Can. J. Chem. 44 (21) (1966) 2575-2579. [21] C.A. Elliger, D.F. Zinkel, B.G. Chan, A.C. Waiss Jr, Diterpene acids as larval growth inhibitors, Experientia 32 (11) (1976) 1364-1366. [22] J.Z. Wu, L.L. Wang, X.P. Chen, X.J. Wei, J.Z. Liang, G.Y. Yao, P. Zheng, Measurement and correlation of vapor-liquid equilibrium data for binary systems composed of camphene, (+)-3-carene, (-)-β-caryophyllene, p-cymene, and α-pinene at 101.33 kPa, Thermochimica Acta 679 (2019) 178318. [23] F. X. Ruan, J. K. Che, J. Hu, Y. Wang, B. Yuan, L. C. Zhou, Vapor-liquid equilibrium of α-pinene-pinane-longifolene system and its excess Gibbs free energy and excess enthalpy, J. Chem. Eng. Chin. Univ. 29 (6) (2015) 1306-1312.(in Chinese) [24] N.H. Snow, G.C. Slack, Head-space analysis in modern gas chromatography, Trac Trends Anal. Chem. 21 (9-10) (2002) 608-617. [25] M. Ayuso, A.M. Palma, M. Larriba, N. Delgado-Mellado, J. García, F. Rodríguez, J.A.P. Coutinho, P.J. Carvalho, P. Navarro, Experimental and CPA EoS description of the key components in the BTX separation from gasolines by extractive distillation with tricyanomethanide-based ionic liquids, Ind. Eng. Chem. Res. 59 (33) (2020) 15058-15068. [26] Zheng P, Wang L. L, Chen X. P., X. J. Wei, J. Z. Liang, J. Z. Wu, Excess Gibbs Energies and Isothermal Vapor-Liquid Equilibrium for Citral + Linalool, Citral + α-Pinene, and Linalool + α-Pinene Systems Using Headspace Gas Chromatography, J. Chem. Eng. Data. 65 (7) (2020) 3593-3604. [27] A. Klamt, Conductor-like screening model for real solvents:A new approach to the quantitative calculation of solvation phenomena, J. Phys. Chem. 99 (7) (1995) 2224-2235. [28] A. Klamt, F. Eckert, Erratum to "COSMO-RS:A novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilib. 172 (1) (2000) 43-72. [29] A. Klamt, G.J.P. Krooshof, R. Taylor, COSMOSPACE:Alternative to conventional activity-coefficient models, AIChE J. 48 (10) (2002) 2332-2349. [30] A. Klamt, The COSMO and COSMO-RS solvation models, Wires Comput. Mol. Sci. 1 (5) (2011) 699-709. [31] P. Pullumbi, COSMO-RS, from quantum chemistry to fluid phase thermodynamics and drug design, AIChE J. 9(2006)3328. [32] P.C. Petris, P. Becherer, J.G.E.M. Fraaije, Alkane/water partition coefficient calculation based on the modified AM1 method and internal hydrogen bonding sampling using COSMO-RS, J. Chem. Inf. Modeling 61 (7) (2021) 3453-3462. [33] J. Warnau, K. Wichmann, J. Reinisch, COSMO-RS predictions of logP in the SAMPL7 blind challenge, J. Comput. Aided Mol. Des. 35 (7) (2021) 813-818. [34] Z.H. Wang, S.L. Liu, Y.F. Jiang, Z.G. Lei, J. Zhang, R.S. Zhu, J.W. Ren, Methyl chloride dehydration with ionic liquid based on COSMO-RS model, Green Energy Environ. 6 (3) (2021) 413-421. [35] I.C. Hwang, S.J. Park, S.Y. Lee, H.S. Ahn, Isothermal vapor-liquid equilibrium at 333.15 K and excess molar volumes at 298.15 K for the ternary system di-isopropyl ether + n-propyl alcohol + toluene and its binary subsystems, Fluid Phase Equilibria 270 (1-2) (2008) 103-108. [36] A. Klamt, F. Eckert, Prediction of vapor liquid equilibria using COSMOtherm, Fluid Phase Equilibria 217 (1) (2004) 53-57. [37] Z.M. Bai, H.H. Liu, Y.S. Liu, L.H. Wu, Prediction of the vapor-liquid equilibrium of chemical reactive systems containing formaldehyde using the COSMO-RS method, Fluid Phase Equilibria 415 (2016) 125-133. [38] H.H.Y. Chien, H.R. Null, Generalized multicomponent equation for activity coefficient calculation, AIChE J. 18 (6) (1972) 1177-1183. [39] B.S. Jhaveri, G.K. Youngren, Three-parameter modification of the Peng-Robinson equation of state to improve volumetric predictions, SPE Reserv. Eng. 3 (3) (1988) 1033-1040. [40] E. Ruiz, V.R. Ferro, J. Palomar, J. Ortega, J.J. Rodriguez, Interactions of ionic liquids and acetone:Thermodynamic properties, quantum-chemical calculations, and NMR analysis, J. Phys. Chem. B 117 (24) (2013) 7388-7398. [41] G. Y. Yao, L. L. Wang, X. P. Chen, D. Q. Liao, Z. F. Tong, F. H. Lei, P. F. Li, Excess enthalpies of binary systems of β-strophanthrene, p-cymene and 3-carene, J. Chem. Eng. Chin. Univ. 32 (4) (2018) 779-784.(in Chinese) [42] P.B. Armentrout, E.I. Armentrout, A.A. Clark, T.E. Cooper, E.M.S. Stennett, D.R. Carl, An experimental and theoretical study of alkali metal cation interactions with cysteine, J. Phys. Chem. B 114 (11) (2010) 3927-3937. [43] V.N. Bowman, A.L. Heaton, P.B. Armentrout, Metal cation dependence of interactions with amino acids:Bond energies of Rb+ to Gly, Ser, Thr, and Pro, J. Phys. Chem. B 114 (11) (2010) 4107-4114. [44] S. Huang, Z.H. Wang, S.L. Liu, R.S. Zhu, Z.G. Lei, Measurement and prediction of vapor pressure in binary systems containing the ionic liquid[EMIM] [DCA, J. Mol. Liq. 309 (2020) 113126. [45] S.L. Liu, Z.H. Wang, R.S. Zhu, Z.G. Lei, J.Q. Zhu, EMIM] [DCA]as an entrainer for the extractive distillation of methanol-ethanol-water system, Green Energy Environ. 6 (3) (2021) 363-370. |