[1] F. Liu, S. Beirle, Q. Zhang, R.J. van der A, B. Zheng, D. Tong, K.B. He, NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015, Atmos. Chem. Phys. 17 (15) (2017) 9261–9275. [2] J.L. Jimenez, G.J. McRae, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers, Environ. Sci. Technol. 34 (12) (2000) 2380–2387. [3] J.L. Laughner, R.C. Cohen, Direct observation of changing NOx lifetime in North American cities, Science 366 (6466) (2019) 723–727. [4] A.D. Bergstra, B. Brunekreef, A. Burdorf, The effect of industry-related air pollution on lung function and respiratory symptoms in school children, Environ. Health 17 (1) (2018) 30. [5] S. Ozaki, The effect of increase of NOx and CO2 on grain and fish production, protection of global warming and climate, Int. J. Earth Sci. Geol. 1(1) (2018) 41–45. [6] F. Corvo, J. Reyes, T. Pérez, A. Castañeda, Role of NOx in materials corrosion and degradation, Revista CENIC. CienciasQuÌmicas. 41 (2010) 1–10. [7] T. Ma, K. Takeuchi, Technology choice for reducing NOx emissions: An empirical study of Chinese power plants, Energy Policy 102 (2017) 362–376. [8] V.I. Pârvulescu, P. Grange, B. Delmon, Catalytic removal of NO, Catal. Today 46 (4) (1998) 233–316. [9] T. Maggos, J.G. Bartzis, P. Leva, D. Kotzias, Application of photocatalytic technology for NOx removal, Appl. Phys. A 89 (1) (2007) 81–84. [10] A. Mizuno, R. Shimizu, A. Chakrabarti, L. Dascalescu, S. Furuta, Nox removal process using pulsed discharge plasma, IEEE Trans. Ind. Appl. 31 (5) (1995) 957–962. [11] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Mol. Catal. A Chem. 161 (1–2) (2000) 205–212. [12] L. Gao, C.T. Li, S.H. Li, W. Zhang, X.Y. Du, L. Huang, Y.C. Zhu, Y.B. Zhai, G.M. Zeng, Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal, Chem. Eng. J. 371 (2019) 781–795. [13] T. Wang, H.Z. Liu, X.Y. Zhang, Y.H. Guo, Y.S. Zhang, Y. Wang, B.M. Sun, A plasma-assisted catalytic system for NO removal over CuCe/ZSM-5 catalysts at ambient temperature, Fuel Process. Technol. 158 (2017) 199–205. [14] H.Y. Xi, S. Zhou, J.X. Zhou, New experimental results of NO removal from simulated marine engine exhaust gases by Na2S2O8/urea solutions, Chem. Eng. J. 362 (2019) 12–20. [15] Z. Wang, Y. Zhu, A simple plasma reduction for synthesis of Au and Pd nanoparticles at room temperature, Chin. J. Chem. Eng. 23 (6) (2015) 1060–1063. [16] L.W. Huang, Y.X. Dang, Removal of SO2 and NOx by pulsed corona combined with in situ Ca(OH)2 absorption, Chin. J. Chem. Eng. 19 (3) (2011) 518–522. [17] L. Yang, X. Zhang, Q. Kan, B.R. Zhao, X.X. Ma, Effect of gas composition on nitric oxide removal from simulated flue gas with DBD-NPC method, Chin. J. Chem. Eng. 27 (12) (2019) 3017–3026. [18] B.W. Wang, Q.M. Sun, Y.J. Lü, M.L. Yang, W.J. Yan, Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production, Chin. J. Chem. Eng. 22 (1) (2014) 104–112. [19] K.F. Shang, X.J. Wang, J. Li, H. Wang, N. Lu, N. Jiang, Y. Wu, Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate, Chem. Eng. J. 311 (2017) 378–384. [20] K.F. Shang, J.Y. Ren, Q. Zhang, N. Lu, N. Jiang, J. Li, Successive treatment of benzene and derived byproducts by a novel plasma catalysis-adsorption process, J. Environ. Chem. Eng. 9 (4) (2021) 105767. [21] X.Q. Mao, G.X. Li, Q. Chen, Y.J. Zhao, Kinetic effects of nanosecond discharge on ignition delay time, Chin. J. Chem. Eng. 24 (12) (2016) 1719–1727. [22] J.T. An, Y.Z. Jiang, Z.J. Zhang, X.X. Ma, T.C. Wang, K.F. Shang, J. Li, Oxidation characteristics of mixed NO and Hg0 in coal-fired flue gas using active species injection generated by surface discharge plasma, Chem. Eng. J. 288 (2016) 298–304. [23] A.A. Abdelaziz, T. Seto, M. Abdel-Salam, Y. Otani, Performance of a surface dielectric barrier discharge based reactor for destruction of naphthalene in an air stream, J. Phys. D Appl. Phys. 45 (11) (2012) 115201. [24] A.A. Abdelaziz, T. Ishijima, N. Osawa, T. Seto, Quantitative analysis of ozone and nitrogen oxides produced by a low power miniaturized surface dielectric barrier discharge: Effect of oxygen content and humidity level, Plasma Chem. Plasma Process. 39 (1) (2019) 165–185. [25] S. Chen, T. Wang, H.Q. Wang, Z.B. Wu, Insights into the reaction pathways and mechanism of NO removal by SDBD plasma via FT-IR measurements, Fuel Process. Technol. 186 (2019) 125–136. [26] A.J.M. Pemen, V.R. Chirumamilla, F.J.C.M. Beckers, W.F.L.M. Hoeben, T. Huiskamp, An SDBD plasma-catalytic system for on-demand air purification, IEEE Trans. Plasma Sci. 46 (12) (2018) 4078–4090. [27] B. Wang, F. Yang, Z.J. Song, L.S. Sun, Removal of Hg0, NO, and SO2 by the surface dielectric barrier discharge coupled with Mn/Ce/Ti-based catalyst, Environ. Sci. Pollut. Res. 28 (14) (2021) 17648–17658. [28] T. Yamamoto, C.L. Yang, M.R. Beltran, Z. Kravets, Plasma-assisted chemical process for NOx control, IEEE Trans. Ind. Appl. 36 (3) (2000) 923–927. [29] M.A. Malik, K.H. Schoenbach, R. Heller, Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air, Chem. Eng. J. 256 (2014) 222–229. [30] K. Nassour, M. Brahami, S. Nemmich, N. Hammadi, N. Zouzou, A. Tilmatine, New hybrid surface–volume dielectric barrier discharge reactor for ozone generation, IEEE Trans. Ind. Appl. 53 (3) (2017) 2477–2484. [31] J. Jolibois, K. Takashima, A. Mizuno, Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NOx removal, J. Electrost. 70 (3) (2012) 300–308. [32] K.F. Shang, M.W. Wang, B.F. Peng, J. Li, N. Lu, N. Jiang, Y. Wu, Characterization of a novel volume-surface{DBD}reactor: Discharge characteristics, ozone production and benzene degradation, J. Phys. D Appl. Phys. 53 (6) (2019) 065201. [33] A. Wang, Z.Y. Hou, Reducing energy consumption in plasma NO conversion utilizing plasma aerodynamic effect, Chem. Eng. J. 408 (2021) 127286. [34] T. West, S. Hosder, Numerical investigation of plasma actuator configurations for flow separation control at multiple angles of attack, In: Proceedings of the 6th AIAA Flow Control Conference, New Orleans, Louisiana, USA, 2012, p. 3053. [35] M. Kotsonis, S. Ghaemi, L. Veldhuis, F. Scarano, Measurement of the body force field of plasma actuators, J. Phys. D Appl. Phys. 44 (4) (2011) 045204. [36] E. Filimonova, F. Beckers, R. Smulders, A. Pemen, W. Hoeben, E. Van Heesch, Pulsed corona oxidation of low NO and NO2 concentrations: Semi-industrial tests and model simulations to illustrate the process, In: Proceedings of the 63rd Gaseous Electronics Conference (GEC) and 7th ICRP, 2010. [37] Z.H. Fan, H.J. Yan, Y.D. Liu, H.F. Guo, Y.Y. Wang, C.S. Ren, Investigation of airflow effects on the dielectric barrier discharge with single/double discharge channel arrangement, Phys. Plasmas 25 (5) (2018) 053519. [38] R. Karami, B. Kamkari, K. Kashefi, Investigation of corona wind effect on heat and mass transfer enhancement, Int. J. Phys. Math. Sci. 5 (2011) 1598–1604. [39] M. Senichi, N. Hideyuki, Control of NOx by positive and negative pulsed corona discharges, IEEE Trans. Ind. Appl. 26 (1990) 374–383. [40] K. Onda, Y. Kasuga, K. Kato, M. Fujiwara, M. Tanimoto, Electric discharge removal of SO2 and NOx from combustion flue gas by pulsed corona discharge, Energy Convers. Manag. 38 (10–13) (1997) 1377–1387. [41] S. Khang, K. Larkin, T. Keener, S. Khang, The effect of nonthermal plasmas on mass transfer coefficients for gas cleaning, in: Workshop on Applications of Electrostatics for Control of Gas Phase Air Pollutants, 1997. |