[1] A. Noor, R. Nazar, K. Naganthran, I. Pop, Unsteady mixed convection flow at a three-dimensional stagnation point, Int. J. Numer. Methods Heat Fluid Flow 31 (1) (2021) 236–250. [2] M. Kumari, G. Nath, Doubly diffusive unsteady mixed convection flow over a vertical plate embedded in a porous medium, Int. J. Energy Res. 13 (4) (1989) 419–430. [3] M. Ghalambaz, S.A.M. Mehryan, A. Hajjar, A. Veismoradi, Unsteady natural convection flow of a suspension comprising Nano-Encapsulated Phase Change Materials (NEPCMs) in a porous medium, Adv. Powder Technol. 31 (3) (2020) 954–966. [4] S. Roy, D. Anilkumar, Unsteady mixed convection from a moving vertical slender cylinder, J. Heat Transf. 128 (4) (2006) 368–373. [5] Z.H. Khan, W.A. Khan, J.G. Tang, M.A. Sheremet, Entropy generation analysis of triple diffusive flow past a horizontal plate in porous medium, Chem. Eng. Sci. 228 (2020) 115980. [6] M. Ghalambaz, F. Moattar, M.A. Sheremet, I. Pop, Triple-diffusive natural convection in a square porous cavity, Transp. Porous Media 111 (1) (2016) 59–79. [7] W.A. Khan, J.R. Culham, Z.H. Khan, I. Pop, Triple diffusion along a horizontal plate in a porous medium with convective boundary condition, Int. J. Therm. Sci. 86 (2014) 60–67. [8] P.M. Patil, M. Roy, S. Roy, E. Momoniat, Triple diffusive mixed convection along a vertically moving surface, Int. J. Heat Mass Transf. 117 (2018) 287–295. [9] P.M. Patil, A. Shashikant, P.S. Hiremath, E. Momoniat, Influence of surface roughness on multidiffusive mixed convective nanofluid flow, Phys. Scr. 94 (5) (2019) 055201. [10] P.M. Patil, M. Kulkarni, J.R. Tonannavar, A computational study of the triple-diffusive nonlinear convective nanoliquid flow over a wedge under convective boundary constraints, Int. Commun. Heat Mass Transf. 128 (2021) 105561. [11] M. Ghalambaz, F. Moattar, A. Karbassi, M.A. Sheremet, I. Pop, Triple-diffusive mixed convection in a porous open cavity, Transp. Porous Media 116 (2) (2017) 473–491. [12] A.Z. Al-Garni, A.Z. Sahin, B.S. Yilbas, S.A. Ahmed, Cooling of aerospace plane using liquid hydrogen and methane, J. Aircr. 32 (3) (1995) 539–546. [13] P. Smakulski, S. Pietrowicz, Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient, IOP Conf. Ser.: Mater. Sci. Eng. 101 (2015) 012037. [14] Universal Industrial Gases Inc. USA. Nitrogen (N2) properties, uses, application: Nitrogen gas and liquid nitrogen, 2018. https://www.uigi.com/nitogen.html. [15] T.S. Chen, A. Mucoglu, Bouyancy effects on forced convection along a vertical cylinder, J. Heat Transf. 97 (2) (1975) 198–203. [16] S.L. Lee, T.S. Chen, B.F. Armaly, Mixed convection along vertical cylinders and needles with uniform surface heat flux, J. Heat Transf. 109 (3) (1987) 711–716. [17] J.J. Heckel, T.S. Chen, B.F. Armaly, Mixed convection along slender vertical cylinders with variable surface temperature, Int. J. Heat Mass Transf. 32(8) (1989) 1431–1442. [18] T.Y. Wang, C. Kleinstreuer, General analysis of steady laminar mixed convection heat transfer on vertical slender cylinders, J. Heat Transf. 111 (2) (1989) 393–398. [19] P.J. Singh, S. Roy, I. Pop, Unsteady mixed convection from a rotating vertical slender cylinder in an axial flow, Int. J. Heat Mass Transf. 51 (5–6) (2008) 1423–1430. [20] M. Kumari, G. Nath, Mixed convection boundary layer flow over a thin vertical cylinder with localized injection/suction and cooling/heating, Int. J. Heat Mass Transf. 47 (5) (2004) 969–976. [21] O. Aydin, A. Kaya, MHD-mixed convection from a vertical slender cylinder, Commun. Nonlinear Sci. Numer. Simul. 16 (4) (2011) 1863–1873. [22] H.S. Takhar, A.J. Chamkha, G. Nath, Combined heat and mass transfer along a vertical moving cylinder with a free stream, Heat Mass Transf. 36 (3) (2000) 237–246. [23] P.M. Patil, S. Roy, A.J. Chamkha, P. S. Kulkarni, Unsteady mixed convection flow from a moving vertical slender cylinder in the presence of viscous dissipation, Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom. 2 (4) (2011) 281-305. [24] P.M. Patil, S. Roy, I. Pop, Chemical reaction effects on unsteady mixed convection boundary layer flow past a permeable slender vertical cylinder due to a nonlinearly stretching velocity, Chem. Eng. Commun. 200 (3) (2013) 398–417. [25] K.U. Rehman, M.Y. Malik, O.D. Makinde, Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface, J. King Saud Univ. Sci. 30 (4) (2018) 440–449. [26] A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transf. 101 (4) (1979) 718–725. [27] S.E. Ahmed, Z.A.S. Raizah, A.M. Aly, Entropy generation due to mixed convection over vertical permeable cylinders using nanofluids, J. King Saud Univ. Sci. 31 (3) (2019) 352–361. [28] N.S. Khan, Q. Shah, A. Bhaumik, P. Kumam, P. Thounthong, I. Amiri, Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks, Sci. Rep. 10 (2020) 4448. [29] M.I. Khan, M.U. Hafeez, T. Hayat, M.I. Khan, A. Alsaedi, Magneto rotating flow of hybrid nanofluid with entropy generation, Comput. Methods Programs Biomed. 183 (2020) 105093. [30] F. Haq, M. Saleem, M.I. Khan, Y. Elmasry, R. Chinram, Entropy generation minimization in bio-convective flow of nanofluid with activation energy and gyrotactic micro-organisms, AIP Adv. 11 (5) (2021) 055017. [31] A. Sahoo, R. Nandkeolyar, Entropy generation and dissipative heat transfer analysis of mixed convective hydromagnetic flow of a Casson nanofluid with thermal radiation and Hall Current, Sci. Rep. 11 (2021) 3926. [32] S.Z. Abbas, M.I. Khan, S. Kadry, W.A. Khan, M.I. Rehman, M. Waqas, Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy, Comput. Methods Programs Biomed. 190 (2020) 105362. [33] M.I. Khan, S. Kadry, Y.M. Chu, M. Waqas, Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation, Chin. J. Chem. Eng. 31 (2021) 17–25. [34] S. Shaw, A.S. Dogonchi, M.K. Nayak, O.D. Makinde, Impact of entropy generation and nonlinear thermal radiation on Darcy–Forchheimer flow of MnFe2O4-casson/water nanofluid due to a rotating disk: Application to brain dynamics, Arab. J. Sci. Eng. 45 (7) (2020) 5471–5490. [35] M.I. Afridi, M. Qasim, O.D. Makinde, Entropy generation due to heat and mass transfer in a flow of dissipative elastic fluid through a porous medium, J. Heat Transf. 141 (2) (2019) 022002. [36] M.I. Afridi, M. Qasim, N.A. Khan, O.D. Makinde, Minimization of entropy generation in MHD mixed convection flow with energy dissipation and joule heating: Utilization of sparrow-quack-boernerlocal non-similarity method, Defect Diffusion Forum 387 (2018) 63–77. [37] M. Hassan, S. Ali, W. Aich, F. Khlissa, B. Ayadi, L. Kolsi, Transport pattern of Non-Newtonian mass and thermal energy under two diverse flow conditions by using modified models for thermodynamics properties, Case Stud. Therm. Eng. 29 (2022) 101714. [38] L. Kolsi, S. Dero, L.A. Lund, U.F. Alqsair, M. Omri, S.U. Khan, Thermal stability and performances of hybrid nanoparticles for convective heat transfer phenomenon with multiple solutions, Case Stud. Therm. Eng. 28 (2021) 101684. [39] K. Vajravelu, K.S. Sastri, Fully developed laminar free convection flow between two parallel vertical walls—I, Int. J. Heat Mass Transf. 20 (6) (1977) 655–660. [40] R. Bhargava, R.S. Agarwal, Fully developed free convection flow in a circular pipe, Ind. J. Pure Appl. Math.10 (1979) 357-365. [41] P.M. Patil, I. Pop, S. Roy, Unsteady heat and mass transfer over a vertical stretching sheet in a parallel free stream with variable wall temperature and concentration, Numer. Methods Partial. Differ. Equ. 28 (3) (2012) 926–941. [42] I.C. Mandal, S. Mukhopadhyay, Nonlinear convection in micropolar fluid flow past an exponentially stretching sheet in an exponentially moving stream with thermal radiation, Mech. Adv. Mater.Struct. 26 (24) (2019) 2040–2046. [43] A.S. Eegunjobi, O.D. Makinde, Inherent irreversibility in a reactive and radiating magnetic nanoliquid film along a slippery inclined heated surface with convective cooling, Heat Transf. 49 (3) (2020) 1533–1553. [44] D.D. Gray, A. Giorgini, The validity of the boussinesq approximation for liquids and gases, Int. J. Heat Mass Transf. 19 (5) (1976) 545–551. [45] H. Schlichting, K. Gersten, Boundary-layer Theory, Springer, New York, 2000. [46] J.R. Radbill, G.A. McCue, Quasilinearization and Nonlinear Problem in Fluid and Orbital Mechanics, Elsevier, Amsterdam, 1970. [47] R.E. Bellman, R.E. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, Elsevier, New York, 1965. [48] K. Inouye, A. Tate, Finite-difference version of quasi-linearization applied to boundary-layer equations, AIAA J. 12 (4) (1974) 558–560. [49] P.M. Patil, D.N. Latha, S. Roy, E. Momoniat, Non-similar solutions of mixed convection flow from an exponentially stretching surface, Ain Shams Eng. J. 8 (4) (2017) 697–705. [50] P.M. Patil, M. Kulkarni, P.S. Hiremath, Effects of surface roughness on mixed convective nanofluid flow past an exponentially stretching permeable surface, Chin. J. Phys. 64 (2020) 203–218. [51] R.S. Varga, Matrix Iterative Analysis, Springer, Berlin, 2000. [52] C.A. Scribd, Mass diffusivity data, https://www.scribd.com/doc/58782633/Mass Diffusivity-Data. |