[1] T. Arakawa, J.S. Philo, K. Tsumoto, R. Yumioka, D. Ejima, Elution of antibodies from a Protein-A column by aqueous arginine solutions, Protein Expr. Purif. 36 (2) (2004) 244–248. [2] E.K. Read, J.T. Park, R.B. Shah, B.S. Riley, K.A. Brorson, A.S. Rathore, Process analytical technology (PAT) for biopharmaceutical products: Part I. concepts and applications, Biotechnol. Bioeng. 105 (2) (2010) 276–284. [3] A.S. Rathore, G. Kapoor, Application of process analytical technology for downstream purification of biotherapeutics, J. Chem. Technol. Biotechnol. 90 (2) (2015) 228–236. [4] C.P. Jiang, J. Liu, M. Rubacha, A.A. Shukla, A mechanistic study of Protein A chromatography resin lifetime, J. Chromatogr. A 1216 (31) (2009) 5849–5855. [5] R.L. Fahrner, P.M. Lester, G.S. Blank, D.H. Reifsnyder, Real-time control of purified product collection during chromatography of recombinant human insulin-like growth factor-I using an on-line assay, J. Chromatogr. A 827 (1) (1998) 37–43. [6] R.L. Fahrner, G.S. Blank, Real-time control of antibody loading during protein A affinity chromatography using an on-line assay, J. Chromatogr. A 849 (1) (1999) 191–196. [7] M. Krättli, F. Steinebach, M. Morbidelli, Online control of the twin-column countercurrent solvent gradient process for biochromatography, J. Chromatogr. A 1293 (2013) 51–59. [8] K. Bakeev. Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, Second Edition, Wiley, New Jersey, 2010. [9] Y. Yigzaw, R. Piper, M. Tran, A.A. Shukla, Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification, Biotechnol. Prog. 22 (1) (2006) 288–296. [10] Y. Yigzaw, P. Hinckley, A. Hewig, G. Vedantham, Ion exchange chromatography of proteins and clearance of aggregates, Curr. Pharm. Biotechnol. 10 (4) (2009) 421–426. [11] U. Marjeta, D. Simpson, K. Zhao. Affinity Chromatography: General Methods, in: R.R. Burgess, M.P. Deutscher (Eds.), Methods in Enzymology, Guide to Protein Purification (2009) 417–438. [12] R.A. Chmielowski, L. Mathiasson, H. Blom, D. Go, H. Ehring, H. Khan, H. Li, C. Cutler, K. Lacki, N. Tugcu, D. Roush, Definition and dynamic control of a continuous chromatography process independent of cell culture titer and impurities, J. Chromatogr. A 1526 (2017) 58–69. [13] H.F. Liu, J.F. Ma, C. Winter, R. Bayer, Recovery and purification process development for monoclonal antibody production, mAbs 2 (5) (2010) 480–499. [14] M. DiLeo, A. Ley, A.E. Nixon, J. Chen, Choices of capture chromatography technology in antibody manufacturing processes, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1068-1069 (2017) 136–148. [15] J. Weinberg, S.J. Zhang, G. Crews, G. Carta, T. Przybycien, Chemical modification of protein A chromatography ligands with polyethylene glycol. I: Effects on IgG adsorption equilibrium, kinetics, and transport, J. Chromatogr. A 1546 (2018) 77–88. [16] P. Arosio, G. Barolo, T. Müller-Späth, H. Wu, M. Morbidelli, Aggregation stability of a monoclonal antibody during downstream processing, Pharm. Res. 28 (8) (2011) 1884–1894. [17] A.A. Shukla, B. Hubbard, T. Tressel, S. Guhan, D. Low, Downstream processing of monoclonal antibodies: Application of platform approaches, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 848 (1) (2007) 28–39. [18] S.T. Evans, K.D. Stewart, C. Afdahl, R. Patel, K.J. Newell, Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes, J. Chromatogr. A 1506 (2017) 73–81. |