[1] S.R. Gubba, L. Ma, M. Pourkashanian, A. Williams, Influence of particle shape and internal thermal gradients of biomass particles on pulverised coal/biomass co-fired flames, Fuel Process. Technol. 92 (11) (2011) 2185-2195. [2] T. Li, L. Wang, X.K. Ku, B.M. Güell, T. Løvås, C.R. Shaddix, Experimental and modeling study of the effect of torrefaction on the rapid devolatilization of biomass, Energy Fuels 29 (7) (2015) 4328-4338. [3] A. Panahi, Y.A. Levendis, N. Vorobiev, M. Schiemann, Direct observations on the combustion characteristics of Miscanthus and Beechwood biomass including fusion and spherodization, Fuel Process. Technol. 166 (2017) 41-49. [4] Y.X. Wu, P.J. Smith, J.S. Zhang, J.N. Thornock, G.X. Yue, Effects of turbulent mixing and controlling mechanisms in an entrained flow coal gasifier, Energy Fuels 24 (2) (2010) 1170-1175. [5] H.S. Shen, Y.X. Wu, K.L. Xu, P.J. Smith, H. Zhang, Eulerian LES simulation of coal jet flame with a simplified DQMOM model, Fuel 216 (2018) 475-483. [6] M. Weidmann, D. Honoré, V. Verbaere, G. Boutin, S. Grathwohl, G. Godard, C. Gobin, R. Kneer, G. Scheffknecht, Experimental characterization of pulverized coal MILD flameless combustion from detailed measurements in a pilot-scale facility, Combust. Flame 168 (2016) 365-377. [7] P. Li, F. Wang, Y. Tu, Z. Mei, J. Zhang, Y. Zheng, H. Liu, Z. Liu, J. Mi, C. Zheng, Moderate or intense low-oxygen dilution oxy-combustion characteristics of light oil and pulverized coal in a pilot-scale furnace, Energy Fuels 28 (2) (2014) 1524-1535. [8] M. Simone, E. Biagini, C. Galletti, L. Tognotti, Evaluation of global biomass devolatilization kinetics in a drop tube reactor with CFD aided experiments, Fuel 88 (10) (2009) 1818-1827. [9] X.Y. Gao, Y.N. Zhang, B.X. Li, X.Y. Yu, Model development for biomass gasification in an entrained flow gasifier using intrinsic reaction rate submodel, Energy Convers. Manag. 108 (2016) 120-131. [10] X.K. Ku, H.H. Jin, J.Z. Lin, Comparison of gasification performances between raw and torrefied biomasses in an air-blown fluidized-bed gasifier, Chem. Eng. Sci. 168 (2017) 235-249. [11] A. Haider, O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol. 58 (1) (1989) 63-70. [12] B. van Wachem, M. Zastawny, F. Zhao, G. Mallouppas, Modelling of gas-solid turbulent channel flow with non-spherical particles with large Stokes numbers, Int. J. Multiph. Flow 68 (2015) 80-92. [13] W. Zhang, K. Tainaka, S. Ahn, H. Watanabe, T. Kitagawa, Experimental and numerical investigation of effects of particle shape and size distribution on particles' dispersion in a coaxial jet flow, Adv. Powder Technol. 29 (10) (2018) 2322-2330. [14] G.A. Voth, A. Soldati, Anisotropic particles in turbulence, Annu. Rev. Fluid Mech. 49 (2017) 249-276. [15] R.I. Backreedy, L.M. Fletcher, J.M. Jones, L. Ma, M. Pourkashanian, A. Williams, Co-firing pulverised coal and biomass: A modeling approach, Proc. Combust. Inst. 30 (2) (2005) 2955-2964. [16] L. Ma, J.M. Jones, M. Pourkashanian, A. Williams, Modelling the combustion of pulverized biomass in an industrial combustion test furnace, Fuel 86 (12-13) (2007) 1959-1965. [17] A. Hölzer, M. Sommerfeld, New simple correlation formula for the drag coefficient of non-spherical particles, Powder Technol. 184 (3) (2008) 361-365. [18] L. Rosendahl, Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow, Appl. Math. Model. 24 (1) (2000) 11-25. [19] G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A 102 (715) (1922) 161-179. [20] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Springer, Dordrecht, 1981. [21] M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, Int. J. Multiph. Flow 39 (2012) 227-239. [22] R. Ouchene, M. Khalij, B. Arcen, A. Tanière, A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers, Powder Technol. 303 (2016) 33-43. [23] N. Guo, T. Li, L.H. Zhao, T. Løvås, Eulerian-Lagrangian simulation of pulverized biomass jet using spheroidal particle approximation, Fuel 239 (2019) 636-651. [24] P.H. Mortensen, H.I. Andersson, J.J.J. Gillissen, B.J. Boersma, Dynamics of prolate ellipsoidal particles in a turbulent channel flow, Phys. Fluids 20 (9) (2008) 093302. [25] C. Marchioli, A. Soldati, Rotation statistics of fibers in wall shear turbulence, Acta Mech. 224 (10) (2013) 2311-2329. [26] N.R. Challabotla, L.H. Zhao, H.I. Andersson, Orientation and rotation of inertial disk particles in wall turbulence, J. Fluid Mech. 766 (2015) R2. [27] N.R. Challabotla, L.H. Zhao, H.I. Andersson, Shape effects on dynamics of inertia-free spheroids in wall turbulence, Phys. Fluids 27 (6) (2015) 061703. [28] L. Zhao, N.R. Challabotla, H.I. Andersson, E.A. Variano, Rotation of nonspherical particles in turbulent channel flow, Phys. Rev. Lett. 115 (24) (2015) 244501. [29] H.S. Morton, J.L. Junkins, J.N. Blanton, Analytical solutions for Euler parameters, Celest. Mech. 10 (3) (1974) 287-301. [30] K.W. Spring, Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: A review, Mech. Mach. Theory 21 (5) (1986) 365-373. [31] B. Arcen, R. Ouchene, M. Khalij, A. Tanière, Prolate spheroidal particles' behavior in a vertical wall-bounded turbulent flow, Phys. Fluids 29 (9) (2017) 093301. [32] R. Mei, An approximate expression for the shear lift force on a spherical particle at finite Reynolds number, Int. J. Multiph. Flow 18 (1) (1992) 145-147. [33] C.F. You, H.Y. Qi, X.C. Xu, Lift force on rotating sphere at low Reynolds numbers and high rotational speeds, Acta Mech. Sin. 19 (4) (2003) 300-307. [34] P.Y. Shi, R. Rzehak, Lift forces on solid spherical particles in unbounded flows, Chem. Eng. Sci. 208 (2019) 115145. [35] H. Zhang, L.X. Zhang, X.Z. An, A.B. Yu, PR-DNS on the momentum and heat transfer of a rotating ellipsoidal particle in a fluid, Powder Technol. 373 (2020) 152-163. [36] W.S. Huang, Y.X. Wu, L.L. Feng, M. Zhang, Y. Zhang, Dispersion characteristics of typical non-spherical particles in a high-speed round jet, J. Tsinghua Univ. (Sci. & Tech.) 60 (6) (2020) 485-492. [37] Y. Hardalupas, A.M.K.P. Taylor, J.H. Whitelaw, Velocity and particle-flux characteristics of turbulent particle-laden jets, Proc. R. Soc. Lond. A 426 (1989), 31-78. [38] T.C.W. Lau, G.J. Nathan, The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet, J. Fluid Mech. 809 (2016) 72-110. [39] L.Z. Chen, Z.C. Chen, S.Z. Sun, Z.Q. Li, The impact of the PDA measurement method in forward scatter on the concentration of gas-particle two phase flow, AIP Conf. Proc. 914 (1) (2007) 437-440. [40] J.Y. Wang, W.S. Huang, Y. Zhang, Y.X. Wu, H. Zhang, G.X. Yue, Particle trajectories in pipe flow considering particle-wall collisions, Phys. Fluids 32 (4) (2020) 043307. [41] S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55 (2) (1972) 193. [42] A.D. Gosman, E. Loannides, Aspects of computer simulation of liquid-fueled combustors, J. Energy 7 (6) (1983) 482-490. [43] J.S. Shuen, L.D. Chen, G.M. Faeth, Evaluation of a stochastic model of particle dispersion in a turbulent round jet, AIChE J. 29 (1) (1983) 167-170. [44] M. Sommerfeld, Particle dispersion in turbulent flow: The effect of particle size distribution, Part. Part. Syst. Charact. 7 (1-4) (1990) 209-220. [45] C.J. Call, I.M. Kennedy, Measurements and simulations of particle dispersion in a turbulent flow, Int. J. Multiph. Flow 18 (6) (1992) 891-903. [46] B.J. Daly, F.H. Harlow, Transport equations in turbulence, Phys. Fluids 13 (11) (1970) 2634-2649. [47] I. Ayrancı, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, F. André, Effect of particle polydispersity on particle concentration measurement by using laser Doppler anemometry, Exp. Therm. Fluid Sci. 31 (8) (2007) 839-847. |