[1] W. Liu, W.L. Sun, A.G.L. Borthwick, T. Wang, F. Li, Y.D. Guan, Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping, J. Hazard. Mater. 317 (2016) 385-393. [2] Z.H. Diao, X.R. Xu, D. Jiang, L.J. Kong, Y.X. Sun, Y.X. Hu, Q.W. Hao, H. Chen, Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions, Chem. Eng. J. 302 (2016) 213-222. [3] J. Wang, X.X. Wang, G.X. Zhao, G. Song, D.Y. Chen, H.X. Chen, J. Xie, T. Hayat, A. Alsaedi, X.K. Wang, Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions, Chem. Eng. J. 334 (2018) 569-578. [4] Q. Zou, Z.P. Zhang, H.F. Li, W.K. Pei, M.N. Ding, Z.L. Xie, Y.N. Huo, H.X. Li, Synergistic removal of organic pollutant and metal ions in photocatalysis-membrane distillation system, Appl. Catal. B Environ. 264 (2020) 118463. [5] S. Jamshidifard, S. Koushkbaghi, S. Hosseini, S. Rezaei, A. Karamipour, A. Jafari rad, M. Irani, Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions, J. Hazard. Mater. 368 (2019) 10-20. [6] Z.X. Ye, X.B. Yin, L.F. Chen, X.Y. He, Z.M. Lin, C.C. Liu, S.Y. Ning, X.P. Wang, Y.Z. Wei, An integrated process for removal and recovery of Cr(VI) from electroplating wastewater by ion exchange and reduction-precipitation based on a silica-supported pyridine resin, J. Clean. Prod. 236 (2019) 117631. [7] F.B. Yao, M.C. Jia, Q. Yang, K. Luo, F. Chen, Y. Zhong, L. He, Z.J. Pi, K.J. Hou, D.B. Wang, X.M. Li, Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in situ precipitation of Cr(III), Chemosphere 260 (2020) 127537. [8] G.H. Xie, X. Chang, B.R. Adhikari, S.S. Thind, A.C. Chen, Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide, Chin. J. Catal. 37 (7) (2016) 1062-1069. [9] A. Mnif, I. Bejaoui, M. Mouelhi, B. Hamrouni, Hexavalent chromium removal from model water and car shock absorber factory effluent by nanofiltration and reverse osmosis membrane, Int J Anal Chem 2017 (2017) 7415708. [10] P.K. Saw, A.K. Prajapati, M.K. Mondal, The extraction of Cr (VI) from aqueous solution with a mixture of TEA and TOA as synergic extractant by using different diluents, J. Mol. Liq. 269 (2018) 101-109. [11] Q.N. Wu, Q.J. Bu, S. Li, Y.H. Lin, X.X. Zou, D.J. Wang, T.F. Xie, Enhanced interface charge transfer via n-n WO3/Ti-Fe2O3 heterojunction formation for water splitting, J. Alloys Compd. 803 (2019) 1105-1111. [12] J.D. Yu, C.Y. Jiang, Q.Q. Guan, P. Ning, J.J. Gu, Q.L. Chen, J.M. Zhang, R.R. Miao, Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth, Chemosphere 195 (2018) 632-640. [13] C. Liu, R.N. Jin, X.K. Ouyang, Y.G. Wang, Adsorption behavior of carboxylated cellulose nanocrystal—Polyethyleneimine composite for removal of Cr(VI) ions, Appl. Surf. Sci. 408 (2017) 77-87. [14] S. Yohi, C.M. Wu, R.T. Koodali, A kinetic study of photocatalytic degradation of phenol over titania-silica mixed oxide materials under UV illumination, Catalysts 12 (2) (2022) 193. [15] Q. Li, Z.S. Chen, H.H. Wang, H. Yang, T. Wen, S.Q. Wang, B.W. Hu, X.K. Wang, Removal of organic compounds by nanoscale zero-valent iron and its composites, Sci. Total. Environ. 792 (2021) 148546. [16] L. Seid, D. Lakhdari, M. Berkani, O. Belgherbi, D. Chouder, Y. Vasseghian, N. Lakhdari, High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials, J. Hazard. Mater. 423 (Pt A) (2022) 126986. [17] M. Motamedi, L. Yerushalmi, F. Haghighat, Z. Chen, Recent developments in photocatalysis of industrial effluents: A review and example of phenolic compounds degradation, Chemosphere 296 (2022) 133688. [18] A.H.A. Saad, A.M. Azzam, S.T. El-Wakeel, B.B. Mostafa, M.B. Abd El-latif, Removal of toxic metal ions from wastewater using ZnO@chitosan core-shell nanocomposite, Environ. Nanotechnol. Monit. Manag. 9 (2018) 67-75. [19] Y. Ren, H.A. Abbood, F.B. He, H. Peng, K.X. Huang, Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption, Chem. Eng. J. 226 (2013) 300-311. [20] J.H. Wang, S.R. Zheng, Y. Shao, J.L. Liu, Z.Y. Xu, D.Q. Zhu, Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid Interface Sci. 349 (1) (2010) 293-299. [21] B. Alizadeh, M. Delnavaz, A. Shakeri, Removal of Cd(II) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite, Carbohydr Polym 181 (2018) 675-683. [22] Y. Wang, R.S. Zhou, C.Z. Wang, G.Z. Zhou, C.Y. Hua, Y.Y. Cao, Z.Z. Song, Novel environmental-friendly nano-composite magnetic attapulgite functionalized by chitosan and EDTA for cadmium(II) removal, J. Alloys Compd. 817 (2020) 153286. [23] Z.W. Lian, Y.F. Li, H.Y. Xian, X.K. Ouyang, Y.Q. Lu, X.W. Peng, D.L. Hu, EDTA-functionalized magnetic chitosan oligosaccharide and carboxymethyl cellulose nanocomposite: Synthesis, characterization, and Pb(II) adsorption performance, Int. J. Biol. Macromol. 165 (Pt A) (2020) 591-600. [24] R.R. Liu, Y.H. Zhang, B.W. Hu, H. Wang, Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: Efficiencies and mechanisms, Chemosphere 287 (2022) 132087. [25] M.H. Dehghani, Y. Karamitabar, F. Changani, Z. Heidarinejad, High performance degradation of phenol from aqueous media using ozonation process and zinc oxide nanoparticles as a semiconductor photocatalyst in the presence of ultraviolet radiation, Desalin. Water Treat. 166 (2019) 105-114. [26] V. Vaiano, M. Matarangolo, J.J. Murcia, H. Rojas, J.A. Navío, M.C. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Appl. Catal. B Environ. 225 (2018) 197-206. [27] M. Sheydaei, M. Fattahi, L. Ghalamchi, V. Vatanpour, Systematic comparison of sono-synthesized Ce-, La-and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor, Ultrason. Sonochemistry 56 (2019) 361-371. [28] J.J. Jiang, K. Zhang, X.D. Chen, F. Zhao, T.F. Xie, D.J. Wang, Y.H. Lin, Porous Ce-doped ZnO hollow sphere with enhanced photodegradation activity for artificial waste water, J. Alloys Compd. 699 (2017) 907-913. [29] J.P. Chen, P.C. Yang, Y.H. Ma, T. Wu, Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator, Carbohydr. Polym. 84 (1) (2011) 364-372. [30] F.P. Zhao, E. Repo, M. Sillanpää, Y. Meng, D.L. Yin, W.Z. Tang, Green synthesis of magnetic EDTA-and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals, Ind. Eng. Chem. Res. 54 (4) (2015) 1271-1281. [31] A.P.H. Association, A.W.W. Association, W.P.C. Federation, W.E. Federation, Standard methods for the examination of water and wastewater, 23rd Edn., American Public Health Association., Washington, DC: American Public Health Assn., 2017. [32] F. Tian, Y. Liu, K. Hu, B. Zhao, The depolymerization mechanism of chitosan by hydrogen peroxide, J. Mater. Sci. 38 (2003) 4709-4712. [33] A.W. Chen, G.M. Zeng, G.Q. Chen, X.J. Hu, M. Yan, S. Guan, C. Shang, L.H. Lu, Z.J. Zou, G.X. Xie, Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2, 4-dichlorophenol, Chem. Eng. J. 191 (2012) 85-94. [34] R.H. Qin, F.S. Li, M.Y. Chen, W. Jiang, Preparation of chitosan-ethylenediaminetetraacetate-enwrapped magnetic CoFe2O4 nanoparticles via zero-length emulsion crosslinking method, Appl. Surf. Sci. 256 (1) (2009) 27-32. [35] A.M. Omer, R.E. Khalifa, Z.H. Hu, H. Zhang, C. Liu, X.K. Ouyang, Fabrication of tetraethylenepentamine functionalized alginate beads for adsorptive removal of Cr (VI) from aqueous solutions, Int. J. Biol. Macromol. 125 (2019) 1221-1231. [36] A. Mannu, M.E. di Pietro, A. Mele, Band-gap energies of choline chloride and triphenylmethylphosphoniumbromide-based systems, Molecules 25 (7) (2020) 1495. [37] M. Haghighi, F. Rahmani, R. Dehghani, A.M. Tehrani, M. Bagher Miranzadeh, Photocatalytic reduction of Cr(VI) in aqueous solution over ZnO/HZSM-5 nanocomposite: Optimization of ZnO loading and process conditions, Desalin. Water Treat. 58 (2017) 168-180. [38] M. Naimi-Joubani, M. Shirzad-Siboni, J.K. Yang, M. Gholami, M. Farzadkia, Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite, J. Ind. Eng. Chem. 22 (2015) 317-323. [39] F. Hosseini, A. Kasaeian, F. Pourfayaz, M. Sheikhpour, D.S. Wen, Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol, Mater. Sci. Semicond. Process. 83 (2018) 175-185. [40] A. Mohagheghian, K. Ayagh, K. Godini, M. Shirzad-Siboni, Enhanced photocatalytic activity of Fe3O4-WO3-APTES for azo dye removal from aqueous solutions in the presence of visible irradiation, Part. Sci. Technol. 37 (3) (2019) 358-370. [41] J. Preethi, M.H. Farzana, S. Meenakshi, Photo-reduction of Cr(VI) using chitosan supported zinc oxide materials, Int. J. Biol. Macromol. 104 (Pt B) (2017) 1783-1793. [42] U. Alam, A. Khan, D. Bahnemann, M. Muneer, Synthesis of Co doped ZnWO4 for simultaneous oxidation of RhB and reduction of Cr(VI) under UV-light irradiation, J. Environ. Chem. Eng. 6 (4) (2018) 4885-4898. [43] A.H. Jawad, M.A. Nawi, Fabrication, optimization and application of an immobilized layer-by-layer TiO2/Chitosan system for the removal of phenol and its intermediates under 45-W fluorescent lamp, React. Kinetics Mech. Catal. 106 (1) (2012) 49-65. [44] N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci. (China) 21 (4) (2009) 527-533. [45] B. Shahmoradi, F. Farahani, S. Kohzadi, A. Maleki, M. Pordel, Y. Zandsalimi, Y.X. Gong, J.X. Yang, G. McKay, S.M. Lee, J.K. Yang, Application of cadmium-doped ZnO for the solar photocatalytic degradation of phenol, Water Sci. Technol. 79 (2) (2019) 375-385. [46] A.D. Mani, P.M.K. Reddy, M. Srinivaas, P. Ghosal, N. Xanthopoulos, C. Subrahmanyam, Facile synthesis of efficient visible active C-doped TiO2 nanomaterials with high surface area for the simultaneous removal of phenol and Cr(VI), Mater. Res. Bull. 61 (2015) 391-399. [47] M. Delnavaz, H. Khoshvaght, A. Sadeghi, K. Ghasemipanah, M.H. Aliabadi, Experimental, statistical and financial analysis of the treatment of organic contaminants in naphthenic spent caustic soda using electrocoagulation process modified by carbon nanotubes, J. Clean. Prod. 327 (2021) 129515. [48] F.L. Liu, S. Hua, C. Wang, M.Q. Qiu, L.M. Jin, B.W. Hu, Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch, Chemosphere 279 (2021) 130539. [49] M. Rezaei, S. Salem, Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics, Spectrochim. Acta A Mol. Biomol. Spectrosc. 167 (2016) 41-49. [50] R.X. Mu, Z.Y. Xu, L.Y. Li, Y. Shao, H.Q. Wan, S.R. Zheng, On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction, J. Hazard. Mater. 176 (1-3) (2010) 495-502. |