[1] L. Bretschger, K. Pittel, Twenty key challenges in environmental and resource economics, Environ. Resour. Econ.77 (4) (2020) 725-750. [2] M, Ikram, Do environmental management systems help improve corporate sustainable development? Evidence from manufacturing companies in Pakistan, J. Clean. Prod. 226 (2019) 628-641. [3] M.R.S. Emami, M.K. Amiri, S.P.G. Zaferani, Removal efficiency optimization of Pb2+ in a nanofiltration process by MLP-ANN and RSM, Korean J. Chem. Eng.38 (2) (2021) 316-325. [4] C. Prasse, D. Stalter, U. Schulte-Oehlmann, J. Oehlmann, T.A.Ternes, Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies, Water Res. 87 (2015) 237-270. [5] O. Agboola, O.S.I. Fayomi, A. Ayodeji, A.O. Ayeni, E.E. Alagbe, S.E. Sanni, E.E. Okoro, L. Moropeng, R. Sadiku, K.W. Kupolati, B.A.Oni, A review on polymer nanocomposites and their effective applications in membranes and adsorbents for water treatment and gas separation, Membranes 11 (2) (2021) 139. [6] N. Kamal, V. Kochkodan, A. Zekri, S.Ahzi, Polysulfone membranes embedded with halloysites nanotubes: preparation and properties, Membranes 10 (1) (2019) 2. [7] S. Poolachira, S. Velmurugan, Effect of solvents in the formation of PES-based asymmetric flat sheet membranes in phase inversion method: phase separation and rheological studies, Iran. Polym. J.32 (3) (2023) 365-376. [8] S. Velu, L. Muruganandam, G.Arthanareeswaran, Preparation and performance studies on polyethersulfone ultrafiltration membranes modified with gelatin for treatment of tannery and distillery wastewater, Braz. J. Chem. Eng. 32 (1) (2015) 179-189. [9] G, Arthanareeswaran, Effect of solvents on performance of polyethersulfone ultrafiltration membranes: investigation of metal ion separations, Desalination 267 (1) (2011) 57-63. [10] C.S. Zhao, J.M. Xue, F. Ran, S.D.Sun, Modification of polyethersulfone membranes - A review of methods, Prog. Mater. Sci. 58 (1) (2013) 76-150. [11] H.T. Huang, J.Y. Yu, H.X. Guo, Y.B. Shen, F. Yang, H. Wang, R. Liu, Y.Liu, Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide, Appl. Surf. Sci. 427 (2018) 38-47. [12] K.C. Khulbe, C. Feng, T.Matsuura, The art of surface modification of synthetic polymeric membranes, J. Appl. Polym. Sci. 115 (2) (2010) 855-895. [13] M.Y. Miao, J.T. Feng, Q. Jin, Y.F. He, Y.N. Liu, Y.Y. Du, N. Zhang, D.Q.Li, Hybrid Ni-Al layered double hydroxide/graphene composite supported gold nanoparticles for aerobic selective oxidation of benzyl alcohol, RSC Adv. 5 (45) (2015) 36066-36074. [14] A.A.R. Abdel-Aty, Y.S. Abdel Aziz, R.M.G. Ahmed, I.M.A. ElSherbiny, S. Panglisch, M. Ulbricht, A.S.G.Khalil, High performance isotropic polyethersulfone membranes for heavy oil-in-water emulsion separation, Sep. Purif. Technol. 253 (2020) 117467. [15] S. Poolachira, S. Velmurugan,Efficient removal of lead ions from aqueous solution by graphene oxide modified polyethersulfone adsorptive mixed matrix membrane, Environ. Res. 210 (2022) 112924. [16] J. Alam, A.K. Shukla, M. Alhoshan, L. Arockiasamy Dass, M.R. Muthumareeswaran, A. Khan, F.A.Ahmed Ali, Graphene oxide, an effective nanoadditive for a development of hollow fiber nanocomposite membrane with antifouling properties, Adv. Polym. Technol. 37 (7) (2018) 2597-2608. [17] A. Giwa, S.W. Hasan,. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment, Sep. Purif. Technol. 241 (2020) 116735. [18] Ping, Xu, “Bridge” graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation, Desalination 488 (2020) 114522. [19] hong ying Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A.A. Ashkarran, M.Mahmoudi, Graphene: promises, facts, opportunities, and challenges in nanomedicine, Chem. Rev. 113 (5) (2013) 3407-3424. [20] Haitao, Wang, Enhancement of hydrophilicity and the resistance for irreversible fouling of polysulfone (PSF) membrane immobilized with graphene oxide (GO) through chloromethylated and quaternized reaction, Chem. Eng. J. 334 (2018) 2068-2078. [21] S. Poolachira, S. Velmurugan, Exfoliated hydrotalcite-modified polyethersulfone-based nanofiltration membranes for removal of lead from aqueous solutions, Environ. Sci. Pollut. Res.27 (24) (2020) 29725-29736. [22] K.B. Dhopte, R.S. Zambare, A.V. Patwardhan, P.R.Nemade, Role of degree of oxidation of graphene oxide on biginelli reaction kinetics, ChemistrySelect 2 (34) (2017) 10997-11006. [23] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M.Tour, Improved synthesis of graphene oxide, ACS Nano 4 (8) (2010) 4806-4814. [24] S. Sajja, Chandrasekhar, Design of an integrated membrane bioreactor process for effective and environmentally safe treatment of highly complex coffee industrial effluent, J. Water Process. Eng. 37 (2020) 101436. [25] B. Venkata Swamy, M. Madhumala, R.S. Prakasham, S.Sridhar, Processing of biscuit industrial effluent using thin film composite nanofiltration membranes, Des. Monomers Polym. 19 (1) (2016) 47-55. [26] S.F. Abdellah Ali, L.A. William, E.A. Fadl, Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate membranes for water desalination applications, Cellulose27 (16) (2020) 9525-9543. [27] G, Kalaiselvi, Synthesis, characterization of polyelectrolyte and performance evaluation of polyelectrolyte incorporated polysulfone ultrafiltration membrane for metal ion removal, Desalination 325 (2013) 65-75. [28] J. Llanos, P.M. Williams, S. Cheng, D. Rogers, C. Wright, Pérez, P.Cañizares, Characterization of a ceramic ultrafiltration membrane in different operational states after its use in a heavy-metal ion removal process, Water Res. 44 (11) (2010) 3522-3530. [29] B.A.M. Al-Rashdi, D.J. Johnson, N.Hilal, Removal of heavy metal ions by nanofiltration, Desalination 315 (2013) 2-17. [30] W.P. Zhu, J. Gao, S.P. Sun, S. Zhang, T.S.Chung, Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal, J. Membr. Sci. 487 (2015) 117-126. [31] X.P. Pei, L. Gan, Z.H. Tong, H.P. Gao, S.Y. Meng, W.L. Zhang, P.X. Wang, Y.S.Chen, Robust cellulose-based composite adsorption membrane for heavy metal removal, J. Hazard. Mater. 406 (2021) 124746. [32] C. Lavanya, R.G. Balakrishna, K. Soontarapa, M.S.Padaki, Fouling resistant functional blend membrane for removal of organic matter and heavy metal ions, J. Environ. Manag. 232 (2019) 372-381. [33] T.A. Otitoju, A. Latif Ahmad, B.S.Ooi, Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending, RSC Adv. 8 (40) (2018) 22710-22728. [34] L.G. Shen, Z.Y. Huang, Y. Liu, R.J. Li, Y.C. Xu, G. Jakaj, H.J.Lin, Polymeric membranes incorporated with ZnO nanoparticles for membrane fouling mitigation: a brief review, Front. Chem. 8 (2020) 224. [35] X. Zhang, Y. Wang, Y.F. Liu, J.L. Xu, Y.D. Han, X.X.Xu, Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions, Appl. Surf. Sci. 316 (2014) 333-340. [36] H. Yoo, S. Kwak,Surface functionalization of PTFE membranes with hyperbranched poly(amidoamine) for the removal of Cu2+ ions from aqueous solution, J. Membr. Sci. 448 (2013) 125-134. [37] M.Han, Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane, J. Membr. Sci. 202 (1-2) (2002) 55-61. [38] H. Rezania, V. Vatanpour, S. Faghani, Poly(itaconic acid)-assisted ultrafiltration of heavy metal ions’ removal from wastewater, Iran. Polym. J.28 (12) (2019) 1069-1077. [39] L.G. Shen, X.K. Bian, X.F. Lu, L.Q. Shi, Z.Y. Liu, L.F. Chen, Z.C. Hou, K.Fan, Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes, Desalination 293 (2012) 21-29. |