中国化学工程学报 ›› 2023, Vol. 62 ›› Issue (10): 65-113.DOI: 10.1016/j.cjche.2023.03.028
Supeng Yu1,2, Ting Xiang3, Njud S. Alharbi4, Bothaina A. Al-aidaroos4, Changlun Chen1,3
收稿日期:
2022-11-07
修回日期:
2023-03-04
出版日期:
2023-10-28
发布日期:
2023-12-23
通讯作者:
Changlun Chen,E-mail:clchen@ipp.ac.cn
基金资助:
Supeng Yu1,2, Ting Xiang3, Njud S. Alharbi4, Bothaina A. Al-aidaroos4, Changlun Chen1,3
Received:
2022-11-07
Revised:
2023-03-04
Online:
2023-10-28
Published:
2023-12-23
Contact:
Changlun Chen,E-mail:clchen@ipp.ac.cn
Supported by:
摘要: Presently, ammonia is an ideal candidate for future clean energy. The Haber-Bosch process has been an essential ammonia production process, and it is one of the most important technological advancements since its invention, sustaining the explosive growth of military munitions industry and fertilizers in the first half of the 20th century. However, the process is facing great challenges: the growing need for ammonia and the demands of environmental protection. High energy consumption and high CO2 emissions greatly limit the application of the Haber-Bosch method, and increasing research efforts are devoted to “green” ammonia synthesis. Thermocatalytic, electrocatalytic, and photocatalytic ammonia production under mild conditions and the derived chemical looping and plasma ammonia production methods, have been widely developed. Electrocatalytic and photocatalytic methods, which use low fossil fuels, are naturally being considered as future directions for the development of ammonia production. Although their catalytic efficiency of ammonia generation is not yet sufficient to satisfy the actual demands, considerable progress has been made in terms of regulating structure and morphology of catalyst and improving preparation efficiency. The chemical looping approach of ammonia production differs from the thermocatalytic, electrocatalytic, and photocatalytic methods, and is the method of reusing raw materials. The plasma treatment approach alters the overall ammonia production approach and builds up a new avenue of development in combination with thermal, photocatalytic, and electrocatalytic methods as well. This review discusses several recent effective catalysts for different ammonia production methods and explores mechanisms as well as efficiency of these catalysts for catalytic N2 fixation of ammonia.
Supeng Yu, Ting Xiang, Njud S. Alharbi, Bothaina A. Al-aidaroos, Changlun Chen. Recent development of catalytic strategies for sustainable ammonia production[J]. 中国化学工程学报, 2023, 62(10): 65-113.
Supeng Yu, Ting Xiang, Njud S. Alharbi, Bothaina A. Al-aidaroos, Changlun Chen. Recent development of catalytic strategies for sustainable ammonia production[J]. Chinese Journal of Chemical Engineering, 2023, 62(10): 65-113.
[1] B.X. Cai, H.Z. Liu, W.F.Han, Solution combustion synthesis of Fe2O3-based catalyst for ammonia synthesis, Catalysts 10 (9) (2020) 1027. [2] Qianru, Wang, Recent progress towards mild-condition ammonia synthesis, J. Energy Chem. 36 (2019) 25–36. [3] J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, How a century of ammonia synthesis changed the world, Nat. Geosci. 1 (10) (2008) 636–639. [4] F. Kawamura, T. Taniguchi, Synthesis of ammonia using sodium melt, Sci. Rep. 7 (1) (2017) 11578. [5] M. Reese, C. Marquart, M. Malmali, K. Wagner, E. Buchanan, A. McCormick, E.L.Cussler, Performance of a small-scale Haber process, Ind. Eng. Chem. Res. 55 (13) (2016) 3742–3750. [6] C. Zamfirescu, I.Dincer, Ammonia as a green fuel and hydrogen source for vehicular applications, Fuel Process. Technol. 90 (5) (2009) 729–737. [7] H. Liu, W. Han, Wüstite-based catalyst for ammonia synthesis: Structure, property and performance, Catal. Today 297 (2017) 276–291. [8] F. Chang, I. Tezsevin, J.W. de Rijk, J.D. Meeldijk, J.P. Hofmann, S. Er, P. Ngene, P.E. de Jongh, Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis, Nat. Catal. 5 (3) (2022) 222–230. [9] Y. Tsuji, K. Ogasawara, M. Kitano, K. Kishida, H. Abe, Y. Niwa, T. Yokoyama, M. Hara, H.Hosono, Control of nitrogen activation ability by Co-Mo bimetallic nanoparticle catalysts prepared via sodium naphthalenide-reduction, J. Catal. 364 (2018) 31–39. [10] C.J. Pickett, J. Talarmin, Electrosynthesis of ammonia, Nature 317 (6038) (1985) 652–653. [11] L.L. Zhang, G.F. Chen, L.X. Ding, H.H. Wang, Advanced non-metallic catalysts for electrochemical nitrogen reduction under ambient conditions, Chem. A Eur. J. 25 (54) (2019) 12464–12485. [12] P.M. Barboun, J.C. Hicks, Unconventional catalytic approaches to ammonia synthesis, Annu. Rev. Chem. Biomol. Eng. 11 (2020) 503–521. [13] S. Zhang, Y.X. Zhao, R. Shi, G.I.N. Waterhouse, T.R.Zhang, Photocatalytic ammonia synthesis: Recent progress and future, EnergyChem 1 (2) (2019) 100013. [14] Z.S. Li, W.J. Luo, M.L. Zhang, J.Y. Feng, Z.G. Zou, Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook, Energy Environ. Sci. 6 (2) (2013) 347–370. [15] S. Feng, W.B. Gao, H.J. Cao, J.P. Guo, P.Chen, Advances in the chemical looping ammonia synthesis, Acta Chim. Sinica 78 (9) (2020) 916. [16] Z. Janović, A.Jukić, Sto godina Haber-boschova postupka dobivanja amonijaka izravnom sintezom od sastavnih elemenata, Kem. Ind. 67 (11–12) (2018) 479–493. [17] H. Liu, Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge, Chin. J. Catal. 35 (10) (2014) 1619–1640. [18] D.E. Brown, T. Edmonds, R.W. Joyner, J.J. McCarroll, S.R. Tennison, The genesis and development of the commercial BP doubly promoted catalyst for ammonia synthesis, Catal Lett 144 (4) (2014) 545–552. [19] A.B.Dongil, Recent progress on transition metal nitrides nanoparticles as heterogeneous catalysts, Nanomaterials 9 (8) (2019) 1111. [20] M.A. Shipman, M.D.Symes, Recent progress towards the electrosynthesis of ammonia from sustainable resources, Catal. Today 286 (2017) 57–68. [21] C.J. van der Ham, M.T. Koper, D.G. Hetterscheid, Challenges in reduction of dinitrogen by proton and electron transfer, Chem. Soc. Rev. 43 (15) (2014) 5183–5191. [22] W.F. Han, S.L. Huang, T.H. Cheng, H.D. Tang, Y. Li, H.Z.Liu, Promotion of Nb2O5 on the wustite-based iron catalyst for ammonia synthesis, Appl. Surf. Sci. 353 (2015) 17–23. [23] P.Q. Yan, W.H. Guo, Z.B. Liang, W. Meng, Z. Yin, S.W. Li, M.Z. Li, M.T. Zhang, J. Yan, D.Q. Xiao, R.Q. Zou, D. Ma, Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis, Nano Res. 12 (9) (2019) 2341–2347. [24] John, Humphreys, Cation doped cerium oxynitride with anion vacancies for Fe-based catalyst with improved activity and oxygenate tolerance for efficient synthesis of ammonia, Appl. Catal. B Environ. 285 (2021) 119843. [25] W. Al Maksoud, R.K. Rai, N. Morlanés, M. Harb, R. Ahmad, S. Ould-Chikh, D. Anjum, M.N. Hedhili, B.E. Al-Sabban, K. Albahily, L. Cavallo, J.M.Basset, Active and stable Fe-based catalyst, mechanism, and key role of alkali promoters in ammonia synthesis, J. Catal. 394 (2021) 353–365. [26] H. Fan, J.M. Folke, Z. Liu, F. Girgsdies, R. Imlau, H. Ruland, S. Heumann, J. Granwehr, R.A. Eichel, R. Schlögl, E. Frei, X. Huang, Ultrathin 2D Fe-nanosheets stabilized by 2D mesoporous silica: Synthesis and application in ammonia synthesis, ACS Appl. Mater. Interfaces 13 (25) (2021) 30187–30197. [27] R. Javaid, T. Nanba, MgFe2O4-supported Ru catalyst for ammonia synthesis: Promotive effect of chlorine, ChemistrySelect 5 (14) (2020) 4312–4315. [28] S.Y. Chen, C.L. Chang, M. Nishi, W.C. Hsiao, Y.I.A. Reyes, H. Tateno, H.H. Chou, C.M. Yang, H.Y T. Chen, T. Mochizuki, H. Takagi, T.Nanba, Unraveling the active sites of Cs-promoted Ru/γ-Al2O3 catalysts for ammonia synthesis, Appl. Catal. B Environ. 310 (2022) 121269. [29] J. Huang, M.W. Yuan, X.Z. Li, Y. Wang, M.W. Li, J.J. Li, Z.X.You, Inhibited hydrogen poisoning for enhanced activity of promoters-Ru/Sr2Ta2O7 nanowires for ammonia synthesis, J. Catal. 389 (2020) 556–565. [30] V. Shadravan, A. Cao, V.J. Bukas, M.K. Grønborg, C.D. Damsgaard, Z.B. Wang, J. Kibsgaard, J.K. Nørskov, I. Chorkendorff, Enhanced promotion of Ru-based ammonia catalysts by in situ dosing of Cs, Energy Environ. Sci. 15 (8) (2022) 3310–3320. [31] Y. Ogura, K. Sato, S.I. Miyahara, Y. Kawano, T. Toriyama, T. Yamamoto, S. Matsumura, S. Hosokawa, K. Nagaoka, Efficient ammonia synthesis over a Ru/La0.5Ce0.5O1.75 catalyst pre-reduced at high temperature, Chem. Sci. 9 (8) (2018) 2230–2237. [32] R. Javaid, Y. Aoki, T.Nanba, Highly efficient Ru/MgO-Er2O3 catalysts for ammonia synthesis, J. Phys. Chem. Solids 146 (2020) 109570. [33] J.Z. Qiu, J.B. Hu, J.G. Lan, L.F. Wang, G.Y. Fu, R.J. Xiao, B.H. Ge, J.X.Jiang, Pure siliceous zeolite-supported Ru single-atom active sites for ammonia synthesis, Chem. Mater. 31 (22) (2019) 9413–9421. [34] Y.L. Zhou, C.Q. Xu, Z.N. Tan, H.F. Cai, X.Y. Wang, J.L. Li, L.R. Zheng, C.T. Au, J. Li, L.L.Jiang, Integrating dissociative and associative routes for efficient ammonia synthesis over a TiCN-promoted Ru-based catalyst, ACS Catal. 12 (4) (2022) 2651–2660. [35] M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.W. Kim, M. Hara, H. Hosono, Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store, Nat. Chem. 4 (11) (2012) 934–940. [36] X.B. Peng, H.X. Liu, Y.Y. Zhang, Z.Q. Huang, L.L. Yang, Y.F. Jiang, X.Y. Wang, L.R. Zheng, C.R. Chang, C.T. Au, L.L. Jiang, J. Li, Highly efficient ammonia synthesis at low temperature over a Ruâ “Co catalyst with dual atomically dispersed active centers, Chem. Sci. 12 (20) (2021) 7125–7137. [37] Y.L. Zhou, J.J. Wang, L.L. Liang, Q.J. Sai, J. Ni, C.T. Au, X.Y. Lin, X.Y. Wang, Y. Zheng, L.R. Zheng, L.L.Jiang, Unraveling the size-dependent effect of Ru-based catalysts on Ammonia synthesis at mild conditions, J. Catal. 404 (2021) 501–511. [38] T.N. Ye, S.W. Park, Y.F. Lu, J. Li, M. Sasase, M. Kitano, H. Hosono, Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts, J. Am. Chem. Soc. 142 (33) (2020) 14374–14383. [39] T.N. Ye, S.W. Park, Y.F. Lu, J. Li, J.Z. Wu, M. Sasase, M. Kitano, H. Hosono, Dissociative and associative concerted mechanism for ammonia synthesis over Co-based catalyst, J. Am. Chem. Soc. 143 (32) (2021) 12857–12866. [40] P.K. Wang, F. Chang, W.B. Gao, J.P. Guo, G.T. Wu, T. He, P. Chen, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nat. Chem. 9 (1) (2017) 64–70. [41] T.N. Ye, S.W. Park, Y.F. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst, Nature 583 (7816) (2020) 391–395. [42] W.B. Gao, P.K. Wang, J.P. Guo, F. Chang, T. He, Q.R. Wang, G.T. Wu, P.Chen, Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt, ACS Catal. 7 (5) (2017) 3654–3661. [43] A. Jafari, A. Ebadi, S. Sahebdelfar, Effect of iron oxide precursor on the properties and ammonia synthesis activity of fused iron catalysts, Reac Kinet Mech Cat 126 (1) (2019) 307–325. [44] N.Pernicone, Wustite as a new precursor of industrial ammonia synthesis catalysts, Appl. Catal. A Gen. 251 (1) (2003) 121–129. [45] J.A. Almquist, E.D.Crittenden, A study of pure-iron and promoted-iron catalysts for ammonia Synthesis1, Ind. Eng. Chem. 18 (12) (1926) 1307–1309. [46] H. Liu, W. Han, C. Huo, Y. Cen, Development and application of wüstite-based ammonia synthesis catalysts, Catal. Today 355 (2020) 110–127. [47] J.C. Liu, X.L. Ma, Y. Li, Y.G. Wang, H. Xiao, J. Li, Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism, Nat. Commun. 9 (1) (2018) 1610. [48] Q. An, M. McDonald, A. Fortunelli, W.A. Goddard 3rd, Si-doped Fe catalyst for ammonia synthesis at dramatically decreased pressures and temperatures, J. Am. Chem. Soc. 142 (18) (2020) 8223–8232. [49] C. Mao, J. Wang, Y. Zou, G. Qi, J.Y. Yang Loh, T. Zhang, M. Xia, J. Xu, F. Deng, M. Ghoussoub, N.P. Kherani, L. Wang, H. Shang, M. Li, J. Li, X. Liu, Z. Ai, G.A. Ozin, J. Zhao, L. Zhang, Hydrogen spillover to oxygen vacancy of TiO2- xHy/Fe: Breaking the scaling relationship of ammonia synthesis, J. Am. Chem. Soc. 142 (41) (2020) 17403–17412. [50] G.A. Somorjai, N. Materer, Surface structures in ammonia synthesis, Top Catal 1 (3) (1994) 215–231. [51] Z. Lendzion-Bielun, W. Arabczyk, M. Figurski, The effect of the iron oxidation degree on distribution of promotors in the fused catalyst precursors and their activity in the ammonia synthesis reaction, Appl. Catal. A Gen. 227 (1–2) (2002) 255–263. [52] Z. Lendzion-Bieluń, W. Arabczyk, Method for determination of the chemical composition of phases of the iron catalyst precursor for ammonia synthesis, Appl. Catal. A Gen. 207 (1–2) (2001) 37–41. [53] J. Folke, K. Dembélé, F. Girgsdies, H.Q. Song, R. Eckert, S. Reitmeier, A. Reitzmann, R. Schlögl, T. Lunkenbein, H.Ruland, Promoter effect on the reduction behavior of wuestite-based catalysts for ammonia synthesis, Catal. Today 387 (2022) 12–22. [54] Q. An, M. McDonald, A. Fortunelli, W.A. Goddard 3rd, Controlling the shapes of nanoparticles by dopant-induced enhancement of chemisorption and catalytic activity: Application to Fe-based ammonia synthesis, ACS Nano 15 (1) (2021) 1675–1684. [55] H. Fan, X. Huang, K. Kähler, J. Folke, F. Girgsdies, D. Teschner, Y.X. Ding, K. Hermann, R. Schlögl, E.Frei, In-situ formation of Fe nanoparticles from FeOOH nanosheets on γ-Al2O3 as efficient catalysts for ammonia synthesis, ACS Sustainable Chem. Eng. 5 (11) (2017) 10900–10909. [56] X.F. Li, Q.K. Li, J. Cheng, L.L. Liu, Q. Yan, Y.C. Wu, X.H. Zhang, Z.Y. Wang, Q. Qiu, Y. Luo, Conversion of dinitrogen to ammonia by FeN3-embedded graphene, J. Am. Chem. Soc. 138 (28) (2016) 8706–8709. [57] G.F. Han, F. Li, Z.W. Chen, C. Coppex, S.J. Kim, H.J. Noh, Z. Fu, Y. Lu, C.V. Singh, S. Siahrostami, Q. Jiang, J.B. Baek, Mechanochemistry for ammonia synthesis under mild conditions, Nat. Nanotechnol. 16 (3) (2021) 325–330. [58] A. Vojvodic, A.J. Medford, F. Studt, F. Abild-Pedersen, T.S. Khan, T. Bligaard, J.K.Nørskov, Exploring the limits: A low-pressure, low-temperature Haber-Bosch process, Chem. Phys. Lett. 598 (2014) 108–112. [59] A.J. Medford, A. Vojvodic, J.S. Hummelshoej, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Noerskov, ChemInform abstract: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, ChemInform 46 (34) (2015) no. [60] O. Hinrichsen, F. Rosowski, A. Hornung, M. Muhler, G.Ertl, The kinetics of ammonia synthesis over Ru-based catalysts, J. Catal. 165 (1) (1997) 33–44. [61] S. Naito, K.Tamaru, Ammonia synthesis from methane, water, and nitrogen over silica-supported ruthenium, J. Chem. Soc., Chem. Commun. (24) (1978) 1105. [62] I. Rossetti, L.Forni, Effect of Ru loading and of Ru precursor in Ru/C catalysts for ammonia synthesis, Appl. Catal. A Gen. 282 (1–2) (2005) 315–320. [63] Akane, Miyazaki, Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis, J. Catal. 204 (2) (2001) 364–371. [64] Yasushi, Kadowaki, Aika, Promoter effect of Sm2O3 on Ru/Al2O3 in ammonia synthesis, J. Catal. 161 (1) (1996) 178–185. [65] Yusuke, Niwa, Aika, The effect of lanthanide oxides as a support for ruthenium catalysts in ammonia synthesis, J. Catal. 162 (1) (1996) 138–142. [66] C.T. Fishel, R.J. Davis, J.M.Garces, Ammonia synthesis catalyzed by ruthenium supported on basic zeolites, J. Catal. 163 (1) (1996) 148–157. [67] M.D. Cisneros, J.H.Lunsford, Characterization and ammonia synthesis activity of ruthenium zeolite catalysts, J. Catal. 141 (1) (1993) 191–205. [68] H.B. Dr, O.H. Dr, A.B. Dr, M.M.P. Dr, The ammonia-synthesis catalyst of the next generation: Barium-promoted oxide-supported ruthenium, Angewandte Chemie Int. Ed. 40 (6) (2001) 1061–1063. [69] B.Y. Lin, Y. Liu, L. Heng, X.Y. Wang, J. Ni, J.X. Lin, L.L.Jiang, Morphology effect of ceria on the catalytic performances of Ru/CeO2 catalysts for ammonia synthesis, Ind. Eng. Chem. Res. 57 (28) (2018) 9127–9135. [70] M. Hara, M. Kitano, H.Hosono, Ru-loaded C12A7: e– electride as a catalyst for ammonia synthesis, ACS Catal. 7 (4) (2017) 2313–2324. [71] J. Kammert, J. Moon, Y.Q. Cheng, L. Daemen, S. Irle, V. Fung, J. Liu, K. Page, X.H. Ma, V. Phaneuf, J.H. Tong, A.J. Ramirez-Cuesta, Z.L. Wu, Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst, J. Am. Chem. Soc. 142 (16) (2020) 7655–7667. [72] S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, H. Hosono, High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-), Science 301 (5633) (2003) 626–629. [73] K.Hayashi, Heavy doping of H–ion in 12CaO·7Al2O3, J. Solid State Chem. 184 (6) (2011) 1428–1432. [74] D. Moszyński, P. Adamski, M. Nadziejko, A. Komorowska, A. Sarnecki, Cobalt molybdenum nitrides co-promoted by chromium and potassium as catalysts for ammonia synthesis, Chem. Pap. 72 (2) (2018) 425–430. [75] L.L. Li, Y.F. Jiang, T.H. Zhang, H.F. Cai, Y.L. Zhou, B.Y. Lin, X.Y. Lin, Y. Zheng, L.R. Zheng, X.Y. Wang, C.Q. Xu, C.T. Au, L.L. Jiang, J.Li, Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters, Chem 8 (3) (2022) 749–768. [76] J.P. Li, W.Y. Wang, W.X. Chen, Q.M. Gong, J. Luo, R.Q. Lin, H.L. Xin, H. Zhang, D.S. Wang, Q. Peng, W. Zhu, C. Chen, Y.D. Li, Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”, Nano Res. 11 (9) (2018) 4774–4785. [77] B. Yang, W.L. Ding, H.H. Zhang, S.J. Zhang, Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity, Energy Environ. Sci. 14 (2) (2021) 672–687. [78] X. Yang, J. Nash, J. Anibal, M. Dunwell, S. Kattel, E. Stavitski, K. Attenkofer, J.G. Chen, Y.S. Yan, B.J. Xu, Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles, J. Am. Chem. Soc. 140 (41) (2018) 13387–13391. [79] N. Lazouski, M. Chung, K. Williams, M.L. Gala, K.Manthiram, Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen, Nat. Catal. 3 (5) (2020) 463–469. [80] J.P. Guo, P.Chen, Catalyst: NH3 as an energy carrier, Chem 3 (5) (2017) 709–712. [81] X.L. Xue, R.P. Chen, C.Z. Yan, P.Y. Zhao, Y. Hu, W.J. Zhang, S.Y. Yang, Z. Jin, Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives, Nano Res. 12 (6) (2019) 1229–1249. [82] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (6321) (2017) eaad4998. [83] T.T. Wu, W.J. Fan, Y. Zhang, F.X.Zhang, Electrochemical synthesis of ammonia: Progress and challenges, Mater. Today Phys. 16 (2021) 100310. [84] P.H. van Langevelde, I. Katsounaros, M.T.M.Koper, Electrocatalytic nitrate reduction for sustainable ammonia production, Joule 5 (2) (2021) 290–294. [85] J. Theerthagiri, J. Park, H.T. Das, N. Rahamathulla, E.S.F. Cardoso, A.P. Murthy, G. Maia, D.N. Vo, M.Y. Choi, Electrocatalytic conversion of nitrate waste into ammonia: A review, Environ Chem Lett 20 (5) (2022) 2929–2949. [86] X.Q. Wang, W.Y. Wang, M. Qiao, G. Wu, W.X. Chen, T.W. Yuan, Q. Xu, M. Chen, Y. Zhang, X. Wang, J. Wang, J.J. Ge, X. Hong, Y.F. Li, Y.E. Wu, Y.D.Li, Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia, Sci. Bull. 63 (19) (2018) 1246–1253. [87] M. Nazemi, M.A. El-Sayed, Electrochemical synthesis of ammonia from N2 and H2O under ambient conditions using pore-size-controlled hollow gold nanocatalysts with tunable plasmonic properties, J. Phys. Chem. Lett. 9 (17) (2018) 5160–5166. [88] M. Liu, S.L. Yin, T.L. Ren, Y. Xu, Z.Q. Wang, X.N. Li, L. Wang, H.J. Wang, Two-dimensional heterojunction electrocatalyst: Au-Bi2Te3 nanosheets for electrochemical ammonia synthesis, ACS Appl. Mater. Interfaces 13 (40) (2021) 47458–47464. [89] S.L. Liu, S.L. Yin, S.Q. Jiao, H.G. Zhang, Z.Q. Wang, Y. Xu, X.N. Li, L. Wang, H.J.Wang, Au nanowire modified with tannic acid for enhanced electrochemical synthesis of ammonia, Mater. Today Energy 21 (2021) 100828. [90] H.J. Wang, Q.Q. Mao, H.J. Yu, S.Q. Wang, Y. Xu, X.N. Li, Z.Q. Wang, L.Wang, Enhanced electrocatalytic performance of mesoporous Au-Rh bimetallic films for ammonia synthesis, Chem. Eng. J. 418 (2021) 129493. [91] H.J. Yu, Z.Q. Wang, S.L. Yin, C.J. Li, Y. Xu, X.N. Li, L. Wang, H.J.Wang, Mesoporous Au3Pd film on Ni foam: A self-supported electrocatalyst for efficient synthesis of ammonia, ACS Appl. Mater. Interfaces 12 (1) (2020) 436–442. [92] R. Manjunatha, A. Schechter, Electrochemical synthesis of ammonia using ruthenium-platinum alloy at ambient pressure and low temperature, Electrochem. Commun. 90 (2018) 96–100. [93] W.C. Xu, G.L. Fan, J.L. Chen, J.H. Li, L. Zhang, S.L. Zhu, X.C. Su, F.Y. Cheng, J. Chen, Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions, Angewandte Chemie Int. Ed. 59 (9) (2020) 3511–3516. [94] A.M. Liu, Q.Y. Yang, X.F. Ren, M.F. Gao, Y.N. Yang, L.G. Gao, Y.Q. Li, Y.Y. Zhao, X.Y. Liang, T.L. Ma, Two-dimensional CuAg/Ti3C2 catalyst for electrochemical synthesis of ammonia under ambient conditions: A combined experimental and theoretical study, Sustainable Energy Fuels 4 (10) (2020) 5061–5071. [95] H.Z. Liu, J. Park, Y.F. Chen, Y. Qiu, Y. Cheng, K. Srivastava, S. Gu, B.H. Shanks, L.T. Roling, W.Z.Li, Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia, ACS Catal. 11 (14) (2021) 8431–8442. [96] Y.T. Wang, H.J. Li, W. Zhou, X. Zhang, B. Zhang, Y.F. Yu, Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia, Angewandte Chemie Int. Ed. 61 (19) (2022) e202202604. [97] Z.X. Wang, E.M. Ortiz, B.R. Goldsmith, N. Singh, Comparing electrocatalytic and thermocatalytic conversion of nitrate on platinumâ “ruthenium alloys, Catal. Sci. Technol. 11 (21) (2021) 7098–7109. [98] L.C. Cong, Z.C. Yu, F.B. Liu, W.M. Huang, Electrochemical synthesis of ammonia from N2 and H2O using a typical non-noble metal carbon-based catalyst under ambient conditions, Catal. Sci. Technol. 9 (5) (2019) 1208–1214. [99] X.J. He, H.R. Guo, X.L. Zhang, T.H. Liao, Y.J. Zhu, H. Tang, T.S. Li, jun song Chen, Facile electrochemical fabrication of magnetic Fe3O4 for electrocatalytic synthesis of ammonia used for hydrogen storage application, Int. J. Hydrog. Energy 46 (47) (2021) 24128–24134. [100] Z.Y. Wu, M. Karamad, X. Yong, Q. Huang, D.A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.Y. Chen, J.Y.T. Kim, Y. Xia, K. Heck, Y. Hu, M.S. Wong, Q. Li, I. Gates, S. Siahrostami, H. Wang, Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst, Nat. Commun. 12 (1) (2021) 2870. [101] G.X. Song, R. Gao, Z. Zhao, Y.J. Zhang, H.Q. Tan, H.B. Li, D.D. Wang, Z.C. Sun, M. Feng, High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification, Appl. Catal. B Environ. 301 (2021) 120809. [102] X.L. Xu, X.J. Liu, J.Y. Xu, J.Z. Zhou, X. Sun, D. Wu, C.W. Zhang, X. Ren, Q.Wei, Interface engineering of Fe3O4@MoS2 Nanocomposites: High efficiency electrocatalytic synthesis of NH3 under mild conditions, Chem. Eng. J. 437 (2022) 135417. [103] C.H. Zhang, Z. Wang, J.C. Lei, L. Ma, B.I. Yakobson, J.M. Tour, Atomic molybdenum for synthesis of ammonia with 50% faradic efficiency, Small 18 (15) (2022) 2106327. [104] Y.Z. Zhang, J. Hu, C.X. Zhang, A.T.F. Cheung, Y. Zhang, L.F. Liu, M.K.H.Leung, Mo2C embedded on nitrogen-doped carbon toward electrocatalytic nitrogen reduction to ammonia under ambient conditions, Int. J. Hydrog. Energy 46 (24) (2021) 13011–13019. [105] M.M. Yang, R.P. Huo, H.D. Shen, Q.N. Xia, J.S. Qiu, A.W. Robertson, X. Li, Z.Y.Sun, Metal-tuned W18O49 for efficient electrocatalytic N2 reduction, ACS Sustainable Chem. Eng. 8 (7) (2020) 2957–2963. [106] L. Zeng, X. Li, S. Chen, J. Wen, W. Huang, A. Chen, Unique hollow Ni–Fe@ MoS2 nanocubes with boosted electrocatalytic activity for N2 reduction to NH3, J. Mater. Chem. A 8 (2020) 7339–7349. [107] J.Y. Liu, X. Kong, L.R. Zheng, X. Guo, X.F. Liu, J.L. Shui, Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction, ACS Nano 14 (1) (2020) 1093–1101. [108] A.M. Liu, X.Y. Liang, Q.Y. Yang, X.F. Ren, M.F. Gao, Y.N. Yang, T.L. Ma, Electrocatalytic synthesis of ammonia using a 2D Ti3C2 MXene loaded with copper nanoparticles, ChemPlusChem 86 (1) (2021) 166–170. [109] Yaling, Zhao, Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia, Nano Energy 97 (2022) 107124. [110] T.L. Ren, Z. Yu, H.J. Yu, K. Deng, Z.Q. Wang, X.N. Li, H.J. Wang, Y. Xu, Interfacial polarization in metal-organic framework reconstructed Cu/Pd/CuOx multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia, Appl. Catal. B Environ. 318 (2022) 121805. [111] Y.T. Xu, M.Y. Xie, H.Q. Zhong, Y. Cao, in situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction, ACS Catal. 12 (14) (2022) 8698–8706. [112] Z. Li, L. Wang, Y. Cai, J.-R. Zhang, W. Zhu, Electrochemically reconstructed copper-polypyrrole nanofiber network for remediating nitrate-containing water at neutral pH, J. Hazard. Mater. 440 (2022) 129828. [113] Q.F. Yao, J.B. Chen, S.Z. Xiao, Y.L. Zhang, X.F. Zhou, Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide, ACS Appl. Mater. Interfaces 13 (26) (2021) 30458–30467. [114] X.J. Liu, X.L. Xu, F.Y. Li, J.Y. Xu, H.M. Ma, X. Sun, D. Wu, C.W. Zhang, X. Ren, Q. Wei, Heterostructured Bi2S3/MoS2 nanoarrays for efficient electrocatalytic nitrate reduction to ammonia under ambient conditions, ACS Appl. Mater. Interfaces 14 (34) (2022) 38835–38843. [115] P.F. Song, L. Kang, H. Wang, R. Guo, R.M. Wang, Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions, ACS Appl. Mater. Interfaces 11 (13) (2019) 12408–12414. [116] Y.Y. Li, S.L. Xiao, X.W. Li, C.F. Chang, M. Xie, J.X. Xu, Z.H. Yang, A robust metal-free electrocatalyst for nitrate reduction reaction to synthesize ammonia, Mater. Today Phys. 19 (59) (2021) 100431. [117] B. Chang, L.L. Li, D. Shi, H.H. Jiang, Z.Z. Ai, S.Z. Wang, Y.L. Shao, J.X. Shen, Y.Z. Wu, Y.L. Li, X.P.Hao, Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia, Appl. Catal. B Environ. 283 (2021) 119622. [118] J. Wang, S. Wang, J.P. Li, S-Doped three-dimensional graphene (S-3DG): A metal-free electrocatalyst for the electrochemical synthesis of ammonia under ambient conditions, Dalton Trans. 49 (7) (2020) 2258–2263. [119] Y.K. Wen, J.C. Hao, S.L. lu, W. Zong, F.L. Lai, P.M. Ma, W.F. Dong, T.X. Liu, M.L. Du, Metal-free boron and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia, Appl. Catal. B Environ. 292 (2021) 120144. [120] C.D. Lv, Y.M. Qian, C.S. Yan, Y. Ding, Y.Y. Liu, G. Chen, G.H. Yu, Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions, Angewandte Chemie 130 (32) (2018) 10403–10407. [121] Ziming Zhao, Yu Long, Sha Luo, Yutong Luo, Ming Chen, Jiantai Ma. Metal-Free C3N4 with plentiful nitrogen vacancy and increased specific surface area for electrocatalytic nitrogen reduction. J. Energy Chem. 60 (9) (2021) 546–555. [122] D.N. Liu, J.H. Wang, S. Bian, Q. Liu, Y.H. Gao, X. Wang, P.K. Chu, X.F. Yu, Photoelectrochemical synthesis of ammonia with black phosphorus, Adv. Funct. Mater. 30 (24) (2020) 2002731. [123] Lu, Tang, Black phosphorus quantum dots supported by a conductive polymer nanofibrous membrane: A self-standing, metal-free electrocatalyst for nitrogen fixation, Compos. Commun. 23 (2021) 100551. [124] B.H.R. Suryanto, K. Matuszek, J. Choi, R.Y. Hodgetts, H.L. Du, J.M. Bakker, C.S.M. Kang, P.V. Cherepanov, A.N. Simonov, D.R. MacFarlane, Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle, Science 372 (6547) (2021) 1187–1191. [125] C.H. Jung, C.Y. Yoo, J.N. Kim, E.Y. Jeong, J.H. Park, H.C. Choi, M.H. Han, H.C. Yoon, Preparation of metal oxide/polyaniline/N-MWCNT hybrid composite electrodes for electrocatalytic synthesis of ammonia at atmospheric pressure, Sustainable Energy Fuels 3 (2) (2019) 431–438. [126] C. Li, Y.S. Fu, Z. Wu, J.W. Xia, X. Wang, Sandwich-like reduced graphene oxide/yolk-shell-structured Fe@Fe3O4/carbonized paper as an efficient freestanding electrode for electrochemical synthesis of ammonia directly from H2O and nitrogen, Nanoscale 11 (27) (2019) 12997–13006. [127] Y. Yao, S.Q. Zhu, H.J. Wang, H. Li, M.H. Shao, A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces, J. Am. Chem. Soc. 140 (4) (2018) 1496–1501. [128] Pengxin, Liu, A vicinal effect for promoting catalysis of Pd1/TiO2: Supports of atomically dispersed catalysts play more roles than simply serving as ligands, Sci. Bull. 63 (11) (2018) 675–682. [129] K. Yin, Z.D. Cui, X.R. Zheng, X.J. Yang, S.L. Zhu, Z.Y. Li, Y.Q. Liang, A Bi2Te3@CoNiMo composite as a high performance bifunctional catalyst for hydrogen and oxygen evolution reactions, J. Mater. Chem. A 3 (45) (2015) 22770–22780. [130] A.L. Suherman, G. Zampardi, H.M.A. Amin, N.P. Young, R.G. Compton, Tannic acid capped gold nanoparticles: Capping agent chemistry controls the redox activity, Phys. Chem. Chem. Phys. 21 (8) (2019) 4444–4451. [131] H.J. Wang, S.L. Yin, C.J. Li, K. Deng, Z.Q. Wang, Y. Xu, X.N. Li, H.R. Xue, L. Wang, Direct synthesis of superlong Pt|Te mesoporous nanotubes for electrocatalytic oxygen reduction, J. Mater. Chem. A 7 (4) (2019) 1711–1717. [132] X.J. Yang, Z. Wen, Z.L. Wang, Q. Jiang, Os1B11N12/C2N as an efficient electrocatalyst for nitrogen reduction reaction, ChemSusChem 15 (7) (2022) e202102648. [133] I.A. Amar, M.M.Ahwidi, Synthesis of ammonia directly from air and water via a single-chamber reactor using lanthanum chromite-based composite as an electrocatalyst, Nano Hybrids Compos. 32 (2021) 35–44. [134] M.A. Légaré, G. Bélanger-Chabot, R.D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, Nitrogen fixation and reduction at boron, Science 359 (6378) (2018) 896–900. [135] N. Zhang, A. Jalil, D.X. Wu, S.M. Chen, Y.F. Liu, C. Gao, W. Ye, Z.M. Qi, H.X. Ju, C.M. Wang, X.J. Wu, L. Song, J.F. Zhu, Y.J. Xiong, Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation, J. Am. Chem. Soc. 140 (30) (2018) 9434–9443. [136] S. Mukherjee, D.A. Cullen, S. Karakalos, K.X. Liu, H. Zhang, S. Zhao, H. Xu, K.L. More, G.F. Wang, G.Wu, Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes, Nano Energy 48 (2018) 217–226. [137] R.Q. Guan, D.D. Wang, Y.J. Zhang, C. Liu, W. Xu, J.O. Wang, Z. Zhao, M. Feng, Q.K. Shang, Z.C.Sun, Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface, Appl. Catal. B Environ. 282 (2021) 119580. [138] Ying, Wang, Monatomic Ti doped on defective monolayer boron nitride as an electrocatalyst for the synthesis of ammonia: A DFT study, Appl. Surf. Sci. 563 (2021) 150277. [139] X. Mao, S. Zhou, C. Yan, Z.H. Zhu, A.J. Du, A single boron atom doped boron nitride edge as a metal-free catalyst for N2 fixation, Phys. Chem. Chem. Phys. 21 (3) (2019) 1110–1116. [140] S.L. Zhao, X.Y. Lu, L.Z. Wang, J.L. Gale, R. Amal, Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions, Adv. Mater. 31 (13) (2019) 1805367. [141] X.M. Li, X. Sun, L. Zhang, S.M. Sun, W.Z. Wang, Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4, J. Mater. Chem. A 6 (7) (2018) 3005–3011. [142] X.X. Zhang, T.W. Wu, H.B. Wang, R.B. Zhao, H.Y. Chen, T. Wang, P.P. Wei, Y.L. Luo, Y.N. Zhang, X.P. Sun, Boron nanosheet: An elemental 2D material for ambient electrocatalytic N2-to-NH3 fixation in neutral media, ACS Catal. 9 (5) (2019) 4609–4615. [143] Q. Wu, H. Wang, S.Y. Shen, B.B. Huang, Y. Dai, Y.D. Ma, Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst, J. Mater. Chem. A 9 (9) (2021) 5434–5441. [144] J. Wu, Y.X. Yu, Electric-field controllable metal-free materials as efficient electrocatalysts for nitrogen fixation, J. Phys. Chem. C 125 (43) (2021) 23699–23708. [145] N. Pence, M. Tokmina-Lukaszewska, Z.Y. Yang, R.N. Ledbetter, L.C. Seefeldt, B. Bothner, J.W. Peters, Unraveling the interactions of the physiological reductant flavodoxin with the different conformations of the Fe protein in the nitrogenase cycle, J. Biol. Chem. 292 (38) (2017) 15661–15669. [146] L. Ma, M.A. Brosius, B.K. Burgess, Construction of a form of the MoFe protein of nitrogenase that accepts electrons from the Fe protein but does not reduce substrate, J. Biol. Chem. 271 (18) (1996) 10528–10532. [147] D. Zhu, L.H. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction, Nat. Mater. 12 (9) (2013) 836–841. [148] D.R. Dean, J.T. Bolin, L. Zheng, Nitrogenase metalloclusters: Structures, organization, and synthesis, J. Bacteriol. 175 (21) (1993) 6737–6744. [149] K. Ithisuphalap, H.G. Zhang, L. Guo, Q.G. Yang, H.P. Yang, G. Wu, Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis, Small Methods 3 (6) (2019) 1800352. [150] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (22) (2014) 7520–7535. [151] G. Schrauzer, T. Guth, Photolysis of water and photoreduction of nitrogen on titanium-dioxide, J. Am. Chem. Soc. 99 (22) (1977) 7189–7193. [152] Minghua, Zhou, Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method, J. Hazard. Mater. 137 (3) (2006) 1838–1847. [153] W.R. Zhao, J. Zhang, X. Zhu, M. Zhang, J. Tang, M. Tan, Y. Wang, Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger, Appl. Catal. B Environ. 144 (2014) 468–477. [154] Mohsen, Lashgari, Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: A novel hydrogenation strategy and basic understanding of the phenomenon, Appl. Catal. A Gen. 529 (2017) 91–97. [155] C.L. Mao, H. Li, H.G. Gu, J.X. Wang, Y.J. Zou, G.D. Qi, J. Xu, F. Deng, W.J. Shen, J. Li, S.Y. Liu, J.C. Zhao, L.Z. Zhang, Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light, Chem 5 (10) (2019) 2702–2717. [156] Y.X. Zhao, Y.F. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm, Adv. Mater. 31 (16) (2019) 1806482. [157] S.Z. Liu, Y.J. Wang, S.B. Wang, M.M. You, Z.Q. Zhao, G.Y. Jiang, J.S. Qiu, B.J. Wang, Z.Y. Sun, Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets, ACS Sustain. Chem. Eng. 7 (7) (2019) 6813–6820,. [158] Q. Han, C. Wu, H. Jiao, R. Xu, Y. Wang, J. Xie, Q. Guo, J. Tang, Rational design of high‐concentration Ti3+ in porous carbon‐doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis, Adv. Mater. 33 (2021) 2008180. [159] C. Li, M.Z. Gu, M.M. Gao, K.N. Liu, X.Y. Zhao, N.W. Cao, J. Feng, Y.M. Ren, T. Wei, M.Y. Zhang, N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation, J. Colloid Interface Sci. 609 (2022) 341–352. [160] X.S. Rong, H.F. Chen, J. Rong, X.Y. Zhang, J. Wei, S. Liu, X.T. Zhou, J.C. Xu, F.X. Qiu, Z.R.Wu, An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement, Chem. Eng. J. 371 (2019) 286–293. [161] T.T. Hou, Q. Li, Y.D. Zhang, W.K. Zhu, K.F. Yu, S.M. Wang, Q. Xu, S.Q. Liang, L.B.Wang, Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability, Appl. Catal. B Environ. 273 (2020) 119072. [162] C.C. Li, T. Wang, Z.J. Zhao, W.M. Yang, J.F. Li, A. Li, Z.L. Yang, G.A. Ozin, J.L. Gong, Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes, Angewandte Chemie Int. Ed. 57 (19) (2018) 5278–5282. [163] W.W. Wang, Z.N. Ji, D.L. Zhang, P.X. Sun, J.H. Duan, TiO2 doped HKUST-1/CM film in the three-phase photocatalytic ammonia synthesis system, Ceram. Int. 47 (17) (2021) 19180–19190. [164] J.W. Wang, C.H. Hua, X.L. Dong, Y. Wang, N. Zheng, Synthesis of plasmonic bismuth metal deposited InVO4 nanosheets for enhancing solar light-driven photocatalytic nitrogen fixation, Sustainable Energy Fuels 4 (4) (2020) 1855–1862. [165] X. Gao, Y. Shang, L. Liu, F. Fu, Multilayer ultrathin Ag-δ-Bi2O3 with ultrafast charge transformation for enhanced photocatalytic nitrogen fixation, J. Colloid Interface Sci. 533 (2019) 649–657. [166] Shengjie, Xia, 3D hollow Bi2O3@CoAl-LDHs direct Z-scheme heterostructure for visible-light-driven photocatalytic ammonia synthesis, J. Colloid Interface Sci. 604 (2021) 798–809. [167] D. Hao, Y.X. Wei, L. Mao, X.J. Bai, Y. Liu, B.T. Xu, W. Wei, B.J. Ni, Boosted selective catalytic nitrate reduction to ammonia on carbon/bismuth/bismuth oxide photocatalysts, J. Clean. Prod. 331 (25) (2021) 129975. [168] C.H. Hua, X.L. Dong, Y. Wang, N. Zheng, H.C. Ma, X.F. Zhang, Bi-modified 3D BiOBr microsphere with oxygen vacancies for efficient visible-light photocatalytic performance, J Mater Sci 54 (13) (2019) 9397–9413. [169] Y. Bai, L.Q. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets, ACS Appl. Mater. Interfaces 8 (41) (2016) 27661–27668. [170] Qingqiang, Meng, High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction, Appl. Catal. B Environ. 256 (2019) 117781. [171] M. Lan, N. Zheng, X.L. Dong, X.L. Ren, J.X. Wu, H.C. Ma, X.F. Zhang, Facile construction of a hierarchical Bi@BiOBr-Bi2MoO6 ternary heterojunction with abundant oxygen vacancies for excellent photocatalytic nitrogen fixation, Sustainable Energy Fuels 5 (11) (2021) 2927–2933. [172] Yalan, Feng, Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2Co3 with band gap engineering, J. Colloid Interface Sci. 583 (2021) 499–509. [173] L.Q. Ye, C.Q. Han, Z.Y. Ma, Y.M. Leng, J. Li, X.X. Ji, D.Q. Bi, H.Q. Xie, Z.X. Huang, Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light, Chem. Eng. J. 307 (2016) 311–318. [174] Songmei, Sun, Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2, Appl. Catal. B Environ. 200 (2017) 323–329. [175] Guanhua, Zhang, S vacancies act as a bridge to promote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis, Chem. Eng. J. 433 (2022) 133670. [176] S.Z. Liu, S.B. Wang, Y. Jiang, Z.Q. Zhao, Z.Y. Sun, Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia, Chem. Eng. J. 373 (2019) 572–579. [177] W.K. Wang, H.J. Zhou, Y.Y. Liu, S.B. Zhang, Y.X. Zhang, G.Z. Wang, H.M. Zhang, H.J. Zhao, Formation of BNC coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance, Small 16 (13) (2020) e1906880. [178] L.M. Yu, Z. Mo, X.L. Zhu, J.J. Deng, F. Xu, Y.H. Song, Y.B. She, H.M. Li, H. Xu, Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia, Green Energy & Environ. 6 (2021) (4)538–545. [179] Q.X. Liu, L.H. Ai, J. Jiang, MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation, J. Mater. Chem. A 6 (9) (2018) 4102–4110. [180] Y.X. Zhao, L.R. Zheng, R. Shi, S. Zhang, X.A. Bian, F. Wu, X.Z. Cao, G.I.N. Waterhouse, T.R. Zhang, Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3, Adv. Energy Mater. 10 (34) (2020) 2002199. [181] G.Q. Zhao, J. Zou, L.K. Liu, J. Hu, J.G. Yu, F.P. Jiao, Photocatalytic fixation of nitrogen to ammonia by NiFe-LDH-derived sulfide microspheres, J Mater Sci: Mater Electron 32 (10) (2021) 13396–13408. [182] H.L. Jia, A.X. Du, H. Zhang, J.H. Yang, R.B. Jiang, J.F. Wang, C.Y. Zhang, Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation, J. Am. Chem. Soc. 141 (13) (2019) 5083–5086. [183] Y.Z. Guo, J.H. Yang, D.H. Wu, H.Y. Bai, Z. Yang, J.F. Wang, B.C. Yang, Au nanoparticle-embedded, nitrogen-deficient hollow mesoporous carbon nitride spheres for nitrogen photofixation, J. Mater. Chem. A 8 (32) (2020) 16218–16231. [184] P. Qiu, C. Huang, G. Dong, F.Y. Chen, F.F. Zhao, Y.S. Yu, X.Q. Liu, Z. Li, Y. Wang, Plasmonic gold nanocrystals simulated efficient photocatalytic nitrogen fixation over Mo doped W18O49 nanowires, J. Mater. Chem. A 9 (25) (2021) 14459–14465. [185] N.R. Dhar, N.N. Pant, Nitrogen loss from soils and oxide surfaces, Nature 153 (3873) (1944) 115–116. [186] J.J. Yang, Progress of metal oxide (sulfide)-based photocatalytic materials for reducing nitrogen to ammonia, J. Chem. 2018 (2) (2018) 1–8. [187] S. Bourgeois, D. Diakite, M. Perdereau, A study of TiO2 powders as a support for the photochemical synthesis of ammonia, React. Solids 6 (1) (1988) 95–104. [188] V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, A. Sclafani, Conversion of solar energy to chemical energy by photoassisted processesâ”I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor, Int. J. Hydrog. Energy 7 (11) (1982) 845–849. [189] K. Ranjit, T. Varadarajan, B. Viswanathan, Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO 2, J. Photochem. Photobiol. A Chem. 96 (1) (1996) 181–185. [190] S. Wang, W.S. Yu, S.Y. Xu, K.H. Han, F.G.Wang, Ammonia from photothermal N2 hydrogenation over Ni/TiO2 catalysts under mild conditions, ACS Sustainable Chem. Eng. 10 (1) (2022) 115–123. [191] J.H. Yang, Y.Z. Guo, R.B. Jiang, F. Qin, H. Zhang, W.Z. Lu, J.F. Wang, J.C.Yu, High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets, J. Am. Chem. Soc. 140 (27) (2018) 8497–8508. [192] Q. Hao, C.W. Liu, G.H. Jia, Y. Wang, H. Arandiyan, W. Wei, B.J. Ni, Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: State of the art and future prospects, Mater. Horiz. 7 (4) (2020) 1014–1029. [193] D. Music, S. Konstantinidis, J.M.Schneider, Equilibrium structure of δ-Bi2O3 from first principles, J. Phys.: Condens. Matter 21 (17) (2009) 175403. [194] P. Riente, A. Matas Adams, J. Albero, E. Palomares, M.A. Pericàs, Light-driven organocatalysis using inexpensive, nontoxic Bi2O3 as the photocatalyst, Angewandte Chemie 126 (36) (2014) 9767–9770. [195] K.K. Bera, R. Majumdar, M. Chakraborty, S.K.Bhattacharya, Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight, J. Hazard. Mater. 352 (2018) 182–191. [196] V.H. Nguyen, M. Mousavi, J.B. Ghasemi, Q.V. Le, S.A. Delbari, M. Shahedi Asl, M. Shokouhimehr, M. Mohammadi, Y. Azizian-Kalandaragh, A. Sabahi Namini, in situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity, J. Colloid Interface Sci. 587 (2021) 538–549. [197] Haodong, Tang, A direct Z-scheme heterojunction with boosted transportation of photogenerated charge carriers for highly efficient photodegradation of PFOA: Reaction kinetics and mechanism, Appl. Catal. B Environ. 285 (2021) 119851. [198] Y. Mi, M. Zhou, L.Y. Wen, H.P. Zhao, Y. Lei, A highly efficient visible-light driven photocatalyst: Two dimensional square-like bismuth oxyiodine nanosheets, Dalton Trans. 43 (25) (2014) 9549–9556. [199] H. Miyama, N. Fujii, Y. Nagae, Heterogeneous photocatalytic synthesis of ammonia from water and nitrogen, Chem. Phys. Lett. 74 (3) (1980) 523–524. [200] S.Z. Hu, X. Chen, Q. Li, Y.F. Zhao, W. Mao, Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts, Catal. Sci. Technol. 6 (15) (2016) 5884–5890. [201] K.A. Brown, D.F. Harris, M.B. Wilker, A. Rasmussen, N. Khadka, H. Hamby, S. Keable, G. Dukovic, J.W. Peters, L.C. Seefeldt, P.W. King, Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid, Science 352 (6284) (2016) 448–450. [202] A. Banerjee, B.D. Yuhas, E.A. Margulies, Y.B. Zhang, Y. Shim, M.R. Wasielewski, M.G. Kanatzidis, Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels, J. Am. Chem. Soc. 137 (5) (2015) 2030–2034. [203] J. Liu, M.S. Kelley, W.Q. Wu, A. Banerjee, A.P. Douvalis, J.S. Wu, Y.B. Zhang, G.C. Schatz, M.G. Kanatzidis, Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia, Proc. Natl. Acad. Sci. USA 113 (20) (2016) 5530–5535. [204] Y.H. Cao, S.Z. Hu, F.Y. Li, Z.P. Fan, J. Bai, G. Lu, Q. Wang, Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light, RSC Adv. 6 (55) (2016) 49862–49867. [205] Y.F. Zhao, Y.X. Zhao, G.I.N. Waterhouse, L.R. Zheng, X.Z. Cao, F. Teng, L.Z. Wu, C.H. Tung, D. O'Hare, T.R. Zhang, Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation, Adv. Mater. 29 (42) (2017) 1703828. [206] S.Z. Hu, F.Y. Li, Y.M. Li, Z.P. Fan, H.F. Ma, W. Li, X.X. Kang, Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies, ACS Sustain. Chem. Eng. 4 (4) (2016) 2269–2278. [207] Q. Zhang, S.Z. Hu, Z.P. Fan, D.S. Liu, Y.F. Zhao, H.F. Ma, F.Y. Li, Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment, Dalton Trans. 45 (8) (2016) 3497–3505. [208] E.A. Monyoncho, M. Dasog, Photocatalytic plasmon-enhanced nitrogen reduction to ammonia, Adv. Energy Sustain. Res. 2 (3) (2021) 2000055. [209] W.B. Gao, J.P. Guo, P.K. Wang, Q.R. Wang, F. Chang, Q.J. Pei, W.J. Zhang, L. Liu, P. Chen, Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers, Nat. Energy 3 (12) (2018) 1067–1075. [210] M. Gálvez, M. Halmann, A. Steinfeld, Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. thermodynamic, environmental, and economic analyses, Ind. Eng. Chem. Res. 46 (2007) 2042–2046. [211] R. Michalsky, A.M. Avram, B.A. Peterson, P.H. Pfromm, A.A. Peterson, Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage, Chem. Sci. 6 (7) (2015) 3965–3974. [212] D. Swearer, N. Knowles, H. Everitt, N. Halas, Light-driven chemical looping for ammonia synthesis, ACS Energy Lett. 4 (7) (2019) 1505–1512. [213] S. Laassiri, C. Zeinalipour-Yazdi, R. Catlow, J. Hargreaves, The potential of Manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping, Appl. Catal. B Environ. 223 (2017) 60–66. [214] Y. Goto, A. Daisley, J. Hargreaves, Towards anti-perovskite nitrides as potential nitrogen storage materials for chemical looping ammonia production: Reduction of Co3ZnN, Ni3ZnN, Co3InN and Ni3InN under hydrogen, Catal. Today 364 (2021) 196–201. [215] Lingling, Li, Operando spectroscopic and isotopic-label-directed observation of LaN-promoted Ru/ZrH2 catalyst for ammonia synthesis via associative and chemical looping route, J. Catal. 389 (2020) 218–228. [216] H.X. Yan, W.B. Gao, Q.R. Wang, Y.Q. Guan, S. Feng, H. Wu, Q. Guo, H.J. Cao, J.P. Guo, P. Chen, Lithium palladium hydride promotes chemical looping ammonia synthesis mediated by lithium imide and hydride, J. Phys. Chem. C 125 (12) (2021) 6716–6722. [217] M. Gálvez, A. Frei, M. Halmann, A. Steinfeld, Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 2. kinetic analysis, Ind. Eng. Chem. Res. 46 (2007) 2047–2053. [218] Yuan, Gao, N-desorption or NH3 generation of TiO2-loaded Al-based nitrogen carrier during chemical looping ammonia generation technology, Int. J. Hydrog. Energy 43 (34) (2018) 16589–16597. [219] Y. Wu, Y. Gao, Q. Zhang, T.Y. Cai, X.P. Chen, D. Liu, M.H. Fan, Promising zirconia-mixed Al-based nitrogen carriers for chemical looping of NH3: Reduced NH3 decomposition and improved NH3 yield, Fuel 264 (10) (2020) 116821. [220] W.M. Aframehr, P.H. Pfromm, Activating dinitrogen for chemical looping ammonia synthesis: Nitridation of Manganese, J Mater Sci 56 (22) (2021) 12584–12595. [221] N.N. Shan, C.R. Huang, R.T. Lee, N. Manavi, L.B. Xu, V. Chikan, P.H. Pfromm, B. Liu, Manipulating the geometric and electronic structures of Manganese nitrides for ammonia synthesis, ChemCatChem 12 (8) (2020) 2233–2244. [222] W.M. Aframehr, C.R. Huang, P.H. Pfromm, Chemical looping of Manganese to synthesize ammonia at atmospheric pressure: Sodium as promoter, Chem. Eng. Technol. 43 (10) (2020) 2126–2133. [223] B.Y. Wang, L.H. Shen, Recent advances in NH3 synthesis with chemical looping technology, Ind. Eng. Chem. Res. 61 (2022) 18215-18231. [224] J. Moon, Y.Q. Cheng, L. Daemen, E. Novak, A.J. Ramirez-Cuesta, Z.L. Wu, On the structural transformation of Ni/BaH2 during a N2-H2 chemical looping process for ammonia synthesis: A joint in situ inelastic neutron scattering and first-principles simulation study, Top Catal 64 (9) (2021) 685–692. [225] S. Feng, W.B. Gao, Q.R. Wang, Y.Q. Guan, H.X. Yan, H. Wu, H.J. Cao, J.P. Guo, P. Chen, A multi-functional composite nitrogen carrier for ammonia production via a chemical looping route, J. Mater. Chem. A 9 (2) (2021) 1039–1047. [226] Y. Guan, C. Liu, Q. Wang, W. Gao, H.A. Hansen, J. Guo, T. Vegge, P. Chen, Transition‐Metal‐Free Barium Hydride Mediates Dinitrogen Fixation and Ammonia Synthesis, Angew. Chem. Int. Ed. 61(39) (2022) e202205805. [227] F. Gorky, A. Best, J. Jasinski, B.J. Allen, A.C. Alba-Rubio, M.L.Carreon, Plasma catalytic ammonia synthesis on Ni nanoparticles: The size effect, J. Catal. 393 (2021) 369–380. [228] F. Gorky, J.M. Lucero, J.M. Crawford, B. Blake, M.A. Carreon, M.L. Carreon, Plasma-induced catalytic conversion of nitrogen and hydrogen to ammonia over zeolitic imidazolate frameworks ZIF-8 and ZIF-67, ACS Appl. Mater. Interfaces 13 (18) (2021) 21338–21348. [229] M. Ben Yaala, A. Saeedi, D.F. Scherrer, L. Moser, R. Steiner, M. Zutter, M. Oberkofler, G. De Temmerman, L. Marot, E. Meyer, Plasma-assisted catalytic formation of ammonia in N2-H2 plasma on a tungsten surface, Phys. Chem. Chem. Phys. 21 (30) (2019) 16623–16633. [230] X.M. Li, Y.Y. Jiao, Y. Cui, C.Y. Dai, P.J. Ren, C.S. Song, X.X. Ma, Synergistic catalysis of the synthesis of ammonia with Co-based catalysts and plasma: From nanoparticles to a single atom, ACS Appl. Mater. Interfaces (2021) 52498–52507. [231] F. Gorky, J.M. Lucero, J.M. Crawford, B.A. Blake, S.R. Guthrie, M.A. Carreon, M.L. Carreon, Insights on cold plasma ammonia synthesis and decomposition using alkaline earth metal-based perovskites, Catal. Sci. Technol. 11 (15) (2021) 5109–5118. [232] J. Sun, D. Alam, R. Daiyan, H. Masood, T.Q. Zhang, R.W. Zhou, P.J. Cullen, E.C. Lovell, A. Jalili, R. Amal, A hybrid plasma electrocatalytic process for sustainable ammonia production, Energy Environ. Sci. 14 (2) (2021) 865–872. [233] L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts, J.A. Martens, Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction, Angewandte Chemie Int. Ed. 59 (52) (2020) 23825–23829. [234] M. Iqbal, Y.N. Kim, H. Kang, D.K. Dinh, S. Choi, C. Jung, Y.H. Song, E. Kim, J. Kim, D. Lee, Plasma catalyst-integrated system for ammonia production from H2O and N2 at atmospheric pressure, ACS Energy Lett. 6 (8) (2021) 3004–3010. [235] M.Q. Li, H. Huang, J. Low, C. Gao, R. Long, Y.J. Xiong, Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction, Small Methods 3 (6) (2019) 1800388. |
[1] | Jinpei Huang, Xingwei Lu, Xuejing Zhang, Yiqiang Jin, Yifeng Zhou. Continuous, efficient and safe synthesis of 1-oxa-2-azaspiro [2.5] octane in a microreaction system[J]. 中国化学工程学报, 2023, 61(9): 37-42. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation[J]. 中国化学工程学报, 2023, 60(8): 262-274. |
[3] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites[J]. 中国化学工程学报, 2023, 57(5): 141-150. |
[4] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution[J]. 中国化学工程学报, 2023, 57(5): 233-246. |
[5] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2[J]. 中国化学工程学报, 2023, 55(3): 212-221. |
[6] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine[J]. 中国化学工程学报, 2023, 54(2): 316-322. |
[7] | Hongyi Qu, Shengyong Mo, Ke Yao, Zhao-Xia Huang, Zhihao Xu, Furong Gao. A master–slave generalized predictive synchronization control for preheating process of multi-cavity hot runner system[J]. 中国化学工程学报, 2023, 62(10): 270-280. |
[8] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism[J]. 中国化学工程学报, 2023, 53(1): 101-123. |
[9] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions[J]. 中国化学工程学报, 2022, 49(9): 161-169. |
[10] | Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution[J]. 中国化学工程学报, 2022, 42(2): 380-388. |
[11] | Shusheng Li, Rui Kuang, Xiangzheng Kong, Xiaoli Zhu, Xubao Jiang. Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution[J]. 中国化学工程学报, 2022, 52(12): 10-18. |
[12] | Chunxiao Zhao, Baojun Yang, Rui Liao, Maoxin Hong, Shichao Yu, Jun Wang, Guanzhou Qiu. Catalytic mechanism of manganese ions and visible light on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans[J]. 中国化学工程学报, 2022, 41(1): 457-465. |
[13] | Tao Zhao, Dazhong Zhong, Genyan Hao, Guang Liu, Jinping Li, Qiang Zhao. Ag nanoparticles anchored on MIL-100/nickel foam nanosheets as an electrocatalyst for efficient oxygen evolution reaction performance[J]. 中国化学工程学报, 2022, 41(1): 480-487. |
[14] | Xin Shen, Rui Zhang, Shuhao Wang, Xiang Chen, Chuan Zhao, Elena Kuzmina, Elena Karaseva, Vladimir Kolosnitsyn, Qiang Zhang. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries[J]. 中国化学工程学报, 2021, 37(9): 137-143. |
[15] | Xiaosa Xu, Yuqian Qiu, Jianping Wu, Baichuan Ding, Qianhui Liu, Guangshen Jiang, Qiongqiong Lu, Jiangan Wang, Fei Xu, Hongqiang Wang. Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage[J]. 中国化学工程学报, 2021, 32(4): 416-422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||