[1] J.S. Eow, Recovery of sulfur from sour acid gas:A review of the technology, Environ. Prog. 21(3)(2002)143-162. [2] O. Abed Habeeb, R. Kanthasamy, G.A.M. Ali, S. Sethupathi, R. Bin Mohd Yunus, Hydrogen sulfide emission sources, regulations, and removal techniques:A review, Rev. Chem. Eng. 34(6)(2018)837-854. [3] J.S. Lar, X.J. Li, Removal of H2S during anaerobic bioconversion of dairy manure, Chin. J. Chem. Eng. 17(2)(2009)273-277. [4] J.F. Zhang, Z.Q. Tong, H2S removal with cupric chloride for producing sulfur, Chin. J. Chem. Eng. 14(6)(2006)810-813. [5] A.K. Gupta, S. Ibrahim, A. Al Shoaibi, Advances in sulfur chemistry for treatment of acid gases, Prog. Energy Combust. Sci. 54(2016)65-92. [6] X.H. Lü, H. Li, X.H. Du, X.E. Wang, M.Y. Lan, J.L. Wu, J. Zhu, J.L. Sun, F. Jiang, Simultaneous catalytic reduction of SO2 and NO from flue gas using H2S as a reductant at low temperatures, React. Chem. Eng. 5(3)(2020)561-569. [7] S. Sinha, A. Raj, A.S. AlShoaibi, S.M. Alhassan, S.H. Chung, Toluene destruction in the Claus process by sulfur dioxide:A reaction kinetics study, Ind. Eng. Chem. Res. 53(42)(2014)16293-16308. [8] R. Schmidt, J.B. Cross, E.G. Latimer, Tail-gas cleanup by simultaneous SO2 and H2S removal, Energy Fuels 23(7)(2009)3612-3616. [9] I.A. Gargurevich, Hydrogen sulfide combustion:Relevant issues under Claus furnace conditions, Ind. Eng. Chem. Res. 44(20)(2005)7706-7729. [10] A. Mehmood, H. Alhasani, N. Alamoodi, Y.F. AlWahedi, S. Ibrahim, A. Raj, An evaluation of kinetic models for the simulation of Claus reaction furnaces in sulfur recovery units under different feed conditions, J. Nat. Gas Sci. Eng. 74(2020)103106. [11] F. Manenti, D. Papasidero, A. Frassoldati, G. Bozzano, S. Pierucci, E. Ranzi, Multi-scale modeling of Claus thermal furnace and waste heat boiler using detailed kinetics, Comput. Chem. Eng. 59(2013)219-225. [12] M. FrenkLach, J.H. Lee, J.N. White, W.C. Gardiner, Oxidation of hydrogen sulfide, Combust. Flame 41(1981)1-16. [13] H. Selim, S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames, Appl. Energy 113(2014)1134-1140. [14] H. Kazempour, F. Pourfayaz, M. Mehrpooya, Modeling and multi-optimization of thermal section of Claus process based on kinetic model, J. Nat. Gas Sci. Eng. 38(2017)235-244. [15] Y. Li, Q.H. Guo, Z.H. Dai, Y.C. Dong, G.S. Yu, F.C. Wang, Study of oxidation for gas mixture of H2S and CH4 in a non-premixed flame under oxygen deficient condition, Appl. Therm. Eng. 117(2017)659-667. [16] A. Raj, S. Ibrahim, A. Jagannath, Combustion kinetics of H2S and other sulfurous species with relevance to industrial processes, Prog. Energy Combust. Sci. 80(2020)100848. [17] Y.L. Xie, J.H. Wang, M. Zhang, J. Gong, W. Jin, Z.H. Huang, Experimental and numerical study on laminar flame characteristics of methane oxy-fuel mixtures highly diluted with CO2, Energy Fuels 27(10)(2013)6231-6237. [18] Y. Li, Q.H. Guo, X.L. Yu, Z.H. Dai, Y.F. Wang, G.S. Yu, F.C. Wang, Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame, Appl. Energy 206(2017)947-958. [19] M. Abián, M. Cebrián, Á. Millera, R. Bilbao, M.U. Alzueta, CS2 and COS conversion under different combustion conditions, Combust. Flame 162(5)(2015)2119-2127. [20] Y. Li, X.L. Yu, H.J. Li, Q.H. Guo, Z.H. Dai, G.S. Yu, F.C. Wang, Detailed kinetic modeling of homogeneous H2S CH4 oxidation under ultra-rich condition for H2 production, Appl. Energy 208(2017)905-919. [21] Y. Li, X.L. Yu, H.J. Li, Q.H. Guo, Z.H. Dai, G.S. Yu, F.C. Wang, Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition, Appl. Energy 190(2017)824-834. [22] S.M. Wang, D. Wu, H.L. Huang, Q.Y. Yang, M.M. Tong, D.H. Liu, C.L. Zhong, Computational exploration of H2S/CH4 mixture separation using acid-functionalized UiO-66(Zr) membrane and composites, Chin. J. Chem. Eng. 23(8)(2015)1291-1299. [23] Y. Li, Z.H. Dai, Y.C. Dong, J.L. Xu, Q.H. Guo, F.C. Wang, Equilibrium prediction of acid gas partial oxidation with presence of CH4 and CO2 for hydrogen production, Appl. Therm. Eng. 107(2016)125-134. [24] D. Bongartz, A.F. Ghoniem, Chemical kinetics mechanism for oxy-fuel combustion of mixtures of hydrogen sulfide and methane, Combust. Flame 162(3)(2015)544-553. [25] H. Selim, A.K. Gupta, A. Al Shoaibi, Effect of CO2 and N2 concentration in acid gas stream on H2S combustion, Appl. Energy 98(2012)53-58. [26] S. Ibrahim, A. Raj, Kinetic simulation of acid gas (H2S and CO2) destruction for simultaneous syngas and sulfur recovery, Ind. Eng. Chem. Res. 55(24)(2016)6743-6752. [27] C.E. Lee, S.R. Lee, J.W. Han, J. Park, Numerical study on effect of CO2 addition in flame structure and NOx formation of CH4 air counterflow diffusion flames, Int. J. Energy Res. 25(4)(2001)343-354. [28] J. Berner-Cambot, C. Vovelle, R. Delbourgo, Flame structures of H2S—air diffusion flames, Symp. Int. Combust. 18(1)(1981)777-783. [29] K. Karan, L.A. Behie, CS2 formation in the Claus reaction furnace:A kinetic study of methane-sulfur and methane-hydrogen sulfide reactions, Ind. Eng. Chem. Res. 43(13)(2004)3304-3313. [30] J.M. Colom-Díaz, M. Leciñena, A. Peláez, M. Abián, R. Millera, M.U.A. Bilbao, Study of the conversion of CH4/H2S mixtures at different pressures, Fuel 262(2020)116484. [31] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Role of toluene to acid gas (H2S and CO2) combustion in H2/O2 N2 flame under Claus condition, Appl. Energy 149(2015)62-68. [32] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Effect of benzene on product evolution in a H2S/O2 flame under Claus condition, Appl. Energy 145(2015)21-26. [33] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Xylene addition effects to H2S combustion under Claus condition, Fuel 150(2015)1-7. [34] V. Palma, V. Vaiano, D. Barba, M. Colozzi, E. Palo, L. Barbato, S. Cortese, H2 production by thermal decomposition of H2S in the presence of oxygen, Int. J. Hydrog. Energy 40(1)(2015)106-113. [35] H. Selim, A. Al Shoaibi, A.K. Gupta, Effect of H2S in methane/air flames on sulfur chemistry and products speciation, Appl. Energy 88(8)(2011)2593-2600. [36] H.S.F. Chin, K. Karan, A.K. Mehrotra, L.A. Behie, The fate of methane in a Claus plant reaction furnace, Can. J. Chem. Eng. 79(4)(2001)482-490. [37] P.D. Clark, N.I. Dowling, M. Huang, W.Y. Svrcek, W.D. Monnery, Mechanisms of CO and COS formation in the Claus furnace, Ind. Eng. Chem. Res. 40(2)(2001)497-508. [38] K. Karan, A.K. Mehrotra, L.A. Behie, A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to Claus plants, Chem. Eng. Sci. 54(15-16)(1999)2999-3006. [39] P. Glarborg, B. Halaburt, P. Marshall, A. Guillory, J. Troe, M. Thellefsen, K. Christensen, Oxidation of reduced sulfur species:Carbon disulfide, Chem. A Eur. J. 118(34)(2014)6798-6809. [40] P.D. Clark, N.I. Dowling, M. Huang, Conversion of CS2 and COS over alumina and titania under Claus process conditions:Reaction with H2O and SO2, Appl Catal B 31(2)(2001)107-112. [41] L.G. Blevins, W.M. Pitts, Modeling of bare and aspirated thermocouples in compartment fires, Fire Saf. J. 33(4)(1999)239-259. [42] D. Green, M. Southard, Perry's Chemical Engineers'Handbook, ninth ed., McGraw-Hill, New York, USA, 2019. [43] S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE J 18(2)(1972)361-371. [44] V. Kaloidas, N. Papayannakos, Kinetics of thermal, non-catalytic decomposition of hydrogen sulphide, Chem. Eng. Sci. 44(11)(1989)2493-2500. [45] H. Selim, S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under Claus conditions, Appl. Energy 109(2013)119-124. [46] K.A. Hawboldt, W.D. Monnery, W.Y. Svrcek, New experimental data and kinetic rate expression for H2S pyrolysis and re-association, Chem. Eng. Sci. 55(5)(2000)957-966. [47] A. Stagni, S. Arunthanayothin, L. Pratali Maffei, O. Herbinet, F. Battin-Leclerc, T. Faravelli, An experimental, theoretical and kinetic-modeling study of hydrogen sulfide pyrolysis and oxidation, Chem. Eng. J. 446(2022)136723. [48] P.D. Clark, M. Huang, S. Liu, X. Long, Partial oxidation of hydrogen sulphide in the manufacture of hydrogen, sulphur, ethylene and propylene, Sulphuric Acid Ind. 4(2004)1-8. [49] C. Rhodes, S.A. Riddel, J. West, B.P. Williams, G.J. Hutchings, The lowtemperature hydrolysis of carbonyl sulfide and carbon disulfide:A review, Catal. Today 59(3-4)(2000)443-464. [50] A.M. El-Melih, L. Iovine, A. Al Shoaibi, A.K. Gupta, Production of hydrogen from hydrogen sulfide in presence of methane, Int. J. Hydrog. Energy 42(8)(2017)4764-4773. [51] H. Selim, A. Al Shoaibi, A.K. Gupta, Fate of sulfur with H2S injection in methane/air flames, Appl. Energy 92(2012)57-64. [52] D.V. Demidov, I.V. Mishin, M.N. Mikhailov, Gibbs free energy minimization as a way to optimize the combined steam and carbon dioxide reforming of methane, Int. J. Hydrog. Energy 36(10)(2011)5941-5950. [53] T.L. Zhu, A. Dreher, M. Flytzani-Stephanopoulos, Direct reduction of SO2 to elemental sulfur by methane over ceria-based catalysts, Appl Catal B 21(2)(1999)103-120. [54] Y. Murakami, M. Kosugi, K.J. Susa, T. Kobayashi, N. Fujii, Kinetics and mechanism for the oxidation of CS2 and COS at high temperature, Bull. Chem. Soc. Jpn 74(7)(2001)1233-1240. |