[1] N.Z. Abdul Kapor, G.P. Maniam, M.H.A. Rahim, M.M. Yusoff, Palm fatty acid distillate as a potential source for biodiesel production-A review, J. Clean. Prod. 143(2017)1-9. [2] I. Riaz, I. Shafiq, F. Jamil, A. Al-Muhtaseb, P. Akhter, S. Shafique, Y. Park, M. Hussain, A review on catalysts of biodiesel (methyl esters) production, Catal. Rev. Sci. Eng.(2022), https://doi.org/10.1080/01614940.2022.2108197. [3] A. Kumar, V.P. Singh, A. Srivastava, Quality biodiesel via biotransesterification from inedible renewable sources, J. Clean. Prod. 379(2022)134653. [4] P. Kharia, R. Saini, V.K. Kudapa, A study on various sources and technologies for production of biodiesel and its efficiency, MRS Energy Sustain 10(1)(2023)35-51. [5] N. Tien Thanh, M. Mostapha, M.K. Lam, S. Ishak, Y. Kanna Dasan, J.W. Lim, I.S. Tan, S.Y. Lau, B.L.F. Chin, T. Hadibarata, Fundamental understanding of in-situ transesterification of microalgae biomass to biodiesel:A critical review, Energy Convers. Manag. 270(2022)116212. [6] J.I. Orege, O. Oderinde, G.A. Kifle, A.A. Ibikunle, S.A. Raheem, O. Ejeromedoghene, E.S. Okeke, O.M. Olukowi, O.B. Orege, E.O. Fagbohun, T.O. Ogundipe, E.P. Avor, O.O. Ajayi, M.O. Daramola, Recent advances in heterogeneous catalysis for green biodiesel production by transesterification, Energy Convers. Manag. 258(2022)115406. [7] M.M.E. Huijbers, W.Y. Zhang, F. Tonin, F. Hollmann, Light-driven enzymatic decarboxylation of fatty acids, Angew. Chem. Int. Ed. 57(41)(2018)13648-13651. [8] Y.J. Ma, X.Z. Zhang, W.Y. Zhang, P.L. Li, Y.R. Li, F. Hollmann, Y.H. Wang, Photoenzymatic production of next generation biofuels from natural triglycerides combining a hydrolase and a photodecarboxylase, ChemPhotoChem 4(1)(2020)39-44. [9] E.F. Aransiola, T.V. Ojumu, O.O. Oyekola, T.F. Madzimbamuto, D.I.O. IkhuOmoregbe, A review of current technology for biodiesel production:State of the art, Biomass Bioenergy 61(2014)276-297. [10] J.S. Huang, Y.M. Jian, P. Zhu, O. Abdelaziz, H. Li, Research progress on the photo-driven catalytic production of biodiesel, Front. Chem. 10(2022)904251. [11] Z.P. Huang, Z.T. Zhao, C.F. Zhang, J.M. Lu, H.F. Liu, N.C. Luo, J. Zhang, F. Wang, Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization, Nat. Catal. 3(2)(2020)170-178. [12] B.S. Chen, Y.Y. Zeng, L. Liu, L. Chen, P.G. Duan, R. Luque, R. Ge, W.Y. Zhang, Advances in catalytic decarboxylation of bioderived fatty acids to diesel-range alkanes, Renew. Sustain. Energy Rev. 158(2022)112178. [13] D. Sorigue, K. Hadjidemetriou, S. Blangy, G. Gotthard, A. Bonvalet, N. Coquelle, P. Samire, A. Aleksandrov, L. Antonucci, A. Benachir, S. Boutet, M. Byrdin, M. Cammarata, S. Carbajo, S. Cuine, R.B. Doak, L. Foucar, A. Gorel, M. Grünbein, E. Hartmann, R. Hienerwadel, M. Hilpert, M. Kloos, T.J. Lane, B. Legeret, P. Legrand, Y. Li-Beisson, S.L.Y. Moulin, D. Nurizzo, G. Peltier, G. Schiro, R.L. Shoeman, M. Sliwa, X. Solinas, B. Zhuang, T.R.M. Barends, J.P. Colletier, M. Joffre, A. Royant, C. Berthomieu, M. Weik, T. Domratcheva, K. Brettel, M.H. Vos, I. Schlichting, P. Arnoux, P. Müller, F. Beisson, Mechanism and dynamics of fatty acid photodecarboxylase, Science 372(6538)(2021) eabd5687. [14] D. Sorigue, B. L egeret, S. Cuin e, S. Blangy, S. Moulin, E. Billon, P. Richaud, S. Brugiere, Y. Cout e, D. Nurizzo, P. Müller, K. Brettel, D. Pignol, P. Arnoux, Y. Li-Beisson, G. Peltier, F. Beisson, An algal photoenzyme converts fatty acids to hydrocarbons, Science 357(6354)(2017)903-907. [15] S.L.Y. Moulin, A. Beyly-Adriano, S. Cuine, S. Blangy, B. L egeret, M. Floriani, A. Burlacot, D. Sorigue, P.P. Samire, Y. Li-Beisson, G. Peltier, F. Beisson, Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae, Plant Physiol 186(3)(2021)1455-1472. [16] Y.Y. Zeng, X.J. Yin, L. Liu, W.Y. Zhang, B.S. Chen, Comparative characterization and physiological function of putative fatty acid photodecarboxylases, Mol. Catal. 532(2022)112717. [17] W. Zhang, M. Ma, M.M.E. Huijbers, G.A. Filonenko, E.A. Pidko, M. van Schie, S. de Boer, B.O. Burek, J.Z. Bloh, W.J.H. van Berkel, W.A. Smith, F. Hollmann, Hydrocarbon synthesis via photoenzymatic decarboxylation of carboxylic acids, J. Am. Chem. Soc. 141(7)(2019)3116-3120. [18] X.R. Zhong, Y.J. Ma, X.Z. Zhang, J.H. Zhang, B. Wu, F. Hollmann, Y.H. Wang, More efficient enzymatic cascade reactions by spatially confining enzymes via the SpyTag/SpyCatcher technology, Mol. Catal. 521(2022)112188. [19] F.S. Aalbers, M.W. Fraaije, Enzyme fusions in biocatalysis:Coupling reactions by pairing enzymes, Chembiochem 20(1)(2019)20-28. [20] Z. Wang, Y. Zhou, X.Y. Ren, K. Wei, X.L. Fan, L.C. Huang, D.S. Zhao, L. Zhang, C. Q. Zhang, Q.Q. Liu, Q.F. Li, Co-overexpression of two key source genes, OsBMY4 and OsISA3, improves multiple key traits of rice seeds, J. Agric. Food Chem. 71(1)(2023)615-625. [21] X.L. Xiang, B.H. Hu, Z.G. Pu, L.Y. Wang, T. Leustek, C.S. Li, Co-overexpression of AtSAT1 and EcPAPR improves seed nutritional value in maize, Front. Plant Sci. 13(2022)969763. [22] M. Di Lorenzo, A. Hidalgo, M. Haas, U.T. Bornscheuer, Heterologous production of functional forms of Rhizopus oryzae lipase in Escherichia coli, Appl. Environ. Microbiol. 71(12)(2005)8974-8977. [23] M. Tian, J. Zhang, W. Luo, Z.Y. Wang, J.Y. Fu, S.W. Huang, P.M. Lü, Propeptidemediated protein folding:mechanism and its impact on lipase, Sheng Wu Gong Cheng Xue Bao 37(1)(2021)88-99.(in Chinese) [24] H.D. Beer, G. Wohlfahrt, R.D. Schmid, J.E. McCarthy, The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence, Biochem. J. 319(Pt 2)(1996)351-359. [25] H.D. Beer, J.E. McCarthy, U.T. Bornscheuer, R.D. Schmid, Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae, Biochim. Biophys. Acta 1399(2-3)(1998)173-180. [26] R. Fernandez-Lafuente, Lipase from Thermomyces lanuginosus:Uses and prospects as an industrial biocatalyst, J. Mol. Catal. B 62(3-4)(2010)197-212. [27] R. Ma, H. Xu, R. Ding, Multigene co-expression strategies of Escherichia coli, China Biotech 32(2012)117-122. [28] P. Reis, R. Miller, M. Leser, H. Watzke, V.B. Fainerman, K. Holmberg, Adsorption of polar lipids at the water-oil interface, Langmuir 24(11)(2008)5781-5786. [29] M. Muth, S. Rothkotter, S. Paprosch, R.P. Schmid, K. Schnitzlein, Competitionof Thermomyces lanuginosus lipase with its hydrolysis products at the oilwater interface, Colloids Surf. B Biointerfaces 149(2017)280-287. [30] E. Jurado, F. Camacho, G. Luzon, M. Fern andez-Serrano, M. García-Rom an, Kinetics of the enzymatic hydrolysis of triglycerides in O/W emulsions, Biochem. Eng. J. 40(3)(2008)473-484. [31] Y.Q. Wu, C.E. Paul, F. Hollmann, Stabilisation of the fatty acid decarboxylase from chlorella variabilis by caprylic acid, Chembiochem 22(14)(2021)2420-2423. [32] E. Jurado, V. Bravo, J. Núnez-Olea, R. Bail~on, D. Altmajer-Vaz, M. Garíia-Rom an, A. Fern andez-Arteaga, Enzyme-based detergent formulas for fatty soils and hard surfaces in a continuous-flow device, J. Surfactants Deterg. 9(1)(2006)83-90. [33] M. Karava, P. Gockel, J. Kabisch, Bacillus subtilisspore surface display of photodecarboxylase for the transformation of lipids to hydrocarbons, Sustain. Energy Fuels 5(6)(2021)1727-1733. [34] F. Li, A. Xia, X.B. Guo, W.Y. Zhang, Y. Huang, X.Q. Zhu, X. Zhu, Q. Liao, Continuous hydrocarbonfuels productionbyphotoenzymaticdecarboxylationof free fatty acids from waste oils, J. Environ. Chem. Eng. 11(5)(2023)110748. [35] P. Reis, K. Holmberg, R. Miller, M.E. Leser, T. Raab, H.J. Watzke, Lipase reaction at interfaces as self-limiting processes, Comptes Rendus Chim 12(1-2)(2009)163-170. |