[1] L. Bai, Y.H. Jiang, D.X. Huang, X.G. Liu, A novel scheduling strategy for crude oil blending, Chin. J. Chem. Eng. 18(5)(2010)777-786. [2] J. Li, W.K. Li, I.A. Karimi, R. Srinivasan, Improving the robustness and efficiency of crude scheduling algorithms, AlChE. J. 53(10)(2007)2659-2680. [3] H. Lee, J.M. Pinto, I.E. Grossmann, S. Park, Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management, Ind. Eng. Chem. Res. 35(5)(1996)1630-1641. [4] J.M. Pinto, M. Joly, L.F.L. Moro, Planning and scheduling models for refinery operations, Comput. Chem. Eng. 24(9-10)(2000)2259-2276. [5] W.K. Li, C.W. Hui, B. Hua, Z.X. Tong, Scheduling crude oil unloading, storage, and processing, Ind. Eng. Chem. Res. 41(26)(2002)6723-6734. [6] P.C.P. Reddy, I.A. Karimi, R. Srinivasan, Novel solution approach for optimizing crude oil operations, AlChE. J. 50(6)(2004)1177-1197. [7] R. Karuppiah, K.C. Furman, I.E. Grossmann, Global optimization for scheduling refinery crude oil operations, Comput. Chem. Eng. 32(11)(2008)2745-2766. [8] P.C.P. Reddy, I.A. Karimi, R. Srinivasan, A new continuous-time formulation for scheduling crude oil operations, Chem. Eng. Sci. 59(6)(2004)1325-1341. [9] B. Zimberg, E. Ferreira, E. Camponogara, A continuous-time formulation for scheduling crude oil operations in a terminal with a refinery pipeline, Comput. Chem. Eng. 178(2023)108354. [10] Y.N. Yang, R.C. He, G. Yu, W. Du, M.L. Yang, W.L. Du, Efficient rolling horizon approach to a crude oil scheduling problem for marine-access refineries, Comput. Chem. Eng. 170(2023)108121. [11] L.J. Su, D.E. Bernal, I.E. Grossmann, L.X. Tang, Modeling for integrated refinery planning with crude-oil scheduling, Chem. Eng. Res. Des. 192(2023)141-157. [12] Y. Chen, Z.H. Yuan, B.Z. Chen, Process optimization with consideration of uncertainties-an overview, Chin. J. Chem. Eng. 26(8)(2018)1700-1706. [13] S. Gupta, N. Zhang, Flexible scheduling of crude oil inventory management, Ind. Eng. Chem. Res. 49(3)(2010)1325-1332. [14] C.F. Li, X.R. He, B.Z. Chen, Q. Xu, C.W. Liu, A hybrid programming model for optimal production planning under demand uncertainty in refinery, Chin. J. Chem. Eng. 16(2)(2008)241-246. [15] J. Li, R. Misener, C.A. Floudas, Scheduling of crude oil operations under demand uncertainty:a robust optimization framework coupled with global optimization, AlChE. J. 58(8)(2012)2373-2396. [16] C.P. Luo, G. Rong, A strategy for the integration of production planning and scheduling in refineries under uncertainty, Chin. J. Chem. Eng. 17(1)(2009)113-127. [17] D. Panda, M. Ramteke, Preventive crude oil scheduling under demand uncertainty using structure adapted genetic algorithm, Appl. Energy 235(2019)68-82. [18] X. Dai, L. Zhao, Z. Li, W.L. Du, W.M. Zhong, R.C. He, F. Qian, A data-driven approach for crude oil scheduling optimization under product yield uncertainty, Chem. Eng. Sci. 246(2021)116971. [19] B. Liu, Y.F. Wang, X. Feng, Optimization of circulating cooling water systems based on chance constrained programming, Chin. J. Chem. Eng. 40(2021)167-178. [20] Wang, Optimizing Crude Oil Operations under Uncertainty 13th IFAC symposium on information control problems in manufacturing, in: IFAC Proceedings Volumes, Elsevier, 2009. [21] C.W. Cao, X.S. Gu, Z. Xin, Chance constrained programming models for refinery short-term crude oil scheduling problem, Appl. Math. Model. 33(3)(2009)1696-1707. [22] C.W. Cao, X.S. Gu, Z. Xin, Stochastic chance constrained mixed-integer nonlinear programming models and the solution approaches for refinery short-term crude oil scheduling problem, Appl. Math. Model. 34(11)(2010)3231-3243. [23] L. Zhao, C. Ning, F.Q. You, Operational optimization of industrial steam systems under uncertainty using data-Driven adaptive robust optimization, AlChE. J. 65(7)(2019) e16500. [24] P.M. Esfahani, D. Kuhn, Data-driven distributionally robust optimization using the Wasserstein metric:performance guarantees and tractable reformulations, Math. Program. Ser. A B 171(1-2)(2018)115-166. [25] J.M. Zhao, L. Zhao, W.L. He, Data-driven Wasserstein distributionally robust optimization for refinery planning under uncertainty, IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society. Toronto, ON, Canada. IEEE,(2021)1-6. [26] Q.Y. Bian, H.H. Xin, Z. Wang, D.Q. Gan, K.P. Wong, Distributionally robust solution to the reserve scheduling problem with partial information of wind power, IEEE Trans. Power Syst. 30(5)(2015)2822-2823. [27] Z. Wang, Q.Y. Bian, H.H. Xin, D.Q. Gan, A distributionally robust co-ordinated reserve scheduling model considering CVaR-based wind power reserve requirements, IEEE Trans. Sustain. Energy 7(2)(2016)625-636. [28] C. Shang, F.Q. You, Distributionally robust optimization for planning and scheduling under uncertainty, Comput. Chem. Eng. 110(2018)53-68. [29] W.J. Xie, On distributionally robust chance constrained programs with Wasserstein distance, Math. Program. Ser. A B 186(1-2)(2021)115-155. [30] C. Ning, F.Q. You, Data-driven Wasserstein distributionally robust optimization for biomass with agricultural waste-to-energy network design under uncertainty, Appl. Energy 255(2019)113857. [31] E. Guevara, F. Babonneau, T. Homem-de-Mello, S. Moret, A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty, Appl. Energy 271(2020)115005. [32] B.T. Liu, Q. Zhang, Z.H. Yuan, Two-stage distributionally robust optimization for maritime inventory routing, Comput. Chem. Eng. 149(2021)107307. [33] R. Ji, Lejeune M.A, Data-driven distributionally robust chance-constrained optimization with Wasserstein metric, J. Glob. Optim. 79(4)(2021)779-811. [34] B.K. Poolla, A. Hota, S. Bolognani, D. Callaway, A. Cherukuri, Wasserstein distributionally robust look-ahead economic dispatch, 2021 IEEE Power&Energy Society General Meeting (PESGM). Washington, DC, USA. IEEE,(2021)1. [35] Y.Q. Zhou, W.B. Yu, S.Y. Zhu, B. Yang, J.P. He, Distributionally robust chance-constrained energy management of an integrated retailer in the multi-energy market, Appl. Energy 286(2021)116516. [36] W.J. Xie, S. Ahmed, Bicriteria approximation of chance-constrained covering problems, Oper. Res. 68(2)(2020)516-533. [37] C. Ordoudis, V.A. Nguyen, D. Kuhn, P. Pinson, Energy and reserve dispatch with distributionally robust joint chance constraints, Oper. Res. Lett. 49(3)(2021)291-299. [38] S. Zymler, D. Kuhn, B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Math. Program. 137(1)(2013)167-198. [39] A. Arrigo, C. Ordoudis, J. Kazempour, Z. De Greve, J.F. Toubeau, F. Vallee, Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch:an exact and physically-bounded formulation, Eur. J. Oper. Res. 296(1)(2022)304-322. [40] C. Duan, W.L. Fang, L. Jiang, L. Yao, J. Liu, Distributionally robust chance-constrained approximate AC-OPF with Wasserstein metric, IEEE Trans. Power Syst. 33(5)(2018)4924-4936. [41] Y. Guo, K. Baker, E. Dall'Anese, Z.C. Hu, T.H. Summers, Data-based distributionally robust stochastic optimal power flow-part II:case studies, IEEE Trans. Power Syst. 34(2)(2019)1493-1503. [42] R.T. Rockafellar, S. Uryasev, Conditional value-at-risk for general loss distributions, J. Bank. Finance 26(7)(2002)1443-1471. [43] V.M. Panaretos, Y. Zemel, Statistical aspects of Wasserstein distances, Annu. Rev. Stat. Appl. 6(2019)405-431. [44] S. Sarykalin, G. Serraino, S. Uryasev, Value-at-risk vs. conditional value-at-risk in risk management and optimization. State-of-the-Art Decision-Making Tools in the Information-Intensive Age. Informs,(2008)270-294. |