[1] T.S. Kaminski, P. Garstecki, Controlled droplet microfluidic systems for multistep chemical and biological assays, Chem. Soc. Rev. 46 (20) (2017) 6210-6226. [2] H.N. Joensson, H. Andersson Svahn, Droplet microfluidics: a tool for single-cell analysis, Angew. Chem. Int. Ed 51 (49) (2012) 12176-12192. [3] D. Dendukuri, P.S. Doyle, The synthesis and assembly of polymeric microparticles using microfluidics, Adv. Mater. 21 (41) (2009) 4071-4086. [4] Q. Yu, X.Y. Chen, Insights into the breaking and dynamic mixing of microemulsion (W/O) in the T-junction microchannel, Chaos Solitons Fractals 155 (2022) 111774. [5] J.C. Zhang, S.L. Shu, X.P. Guan, N. Yang, Lattice Boltzmann simulation of drop splitting in a fractal tree-like microchannel, Chem. Eng. Sci. 252 (2022) 117277. [6] G.F. Christopher, N.N. Noharuddin, J.A. Taylor, S.L. Anna, Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Phys. Rev. E 78 (3) (2008) 036317. [7] D.A. Hoang, V. van Steijn, L.M. Portela, M.T. Kreutzer, C.R. Kleijn, Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method, Comput. Fluids 86 (2013) 28-36. [8] G.Y. Soh, G.H. Yeoh, V. Timchenko, Numerical investigation on the velocity fields during droplet formation in a microfluidic T-junction, Chem. Eng. Sci. 139 (2016) 99-108. [9] X.L. Li, L.Q. He, Y. He, H.L. Gu, M.H. Liu, Numerical study of droplet formation in the ordinary and modified T-junctions, 31 (8) (2019) 082101. [10] P.I. Frazier, A tutorial on Bayesian optimization, (2018): 1807.02811. [11] B. Shahriari, K. Swersky, Z.Y. Wang, R.P. Adams, N. de Freitas, Taking the human out of the loop: a review of Bayesian optimization, Proc. IEEE 104 (1) (2016) 148-175. [12] Q. Yu, X.Y. Chen, X.Y. Li, D.Y. Zhang, Optimized design of droplet micro-mixer with sinusoidal structure based on Pareto genetic algorithm, Int. Commun. Heat Mass Transf. 135 (2022) 106124. [13] I. Kundacina, O. Kundacina, D. Miskovic, V. Radonic, Advancing microfluidic design with machine learning: a Bayesian optimization approach, Lab Chip 25 (4) (2025) 657-672. [14] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1) (1981) 201-225. [15] H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, 12 (6) (1998) 620-631. [16] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335-354. [17] M. G. Genton, Classes of kernels for machine learning: a statistics perspective, J. Mach. Learn. Res. 2 (2001) 299-312. [18] O. Kramer, Scikit-learn. Machine Learning for Evolution Strategies. Springer International Publishing, (2016), pp 5-53. [19] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip 6 (3) (2006) 437-446. [20] A. Choudhary, R. Thakur, Evaluation of connected component labeling algorithms on shared and distributed memory multiprocessors, Proceedings Sixth International Parallel Processing Symposium. March 23-26, 1992, Beverly Hills, CA, USA. IEEE, (1992) 362-365. [21] P. Ngatchou, A. Zarei, A. El-Sharkawi, Pareto multi objective optimization, Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems. November 6-10, 2005, Arlington, VA, USA. IEEE, (2006) 84-91. [22] K.P. Schwarz, M.G. Sideris, R. Forsberg, The use of FFT techniques in physical geodesy, Geophys. J. Int. 100 (3) (1990) 485-514. [23] W.W. Xu, S.J. Cui, X. Xu, S.B. Lu, Z.Z. Liu, Q. Li, Numerical simulation on the characteristics of droplet generation and the distribution of discrete-phase flow patterns in T-junction microchannels, Int. J. Heat Fluid Flow 110 (2024) 109626. |