[1] A. De Meijere, S. Redlich, D. Frank, J. Magull, A. Hofmeister, H. Menzel, B. Konig, J. Svoboda, Octacyclopropylcubane and some of its isomers, Angew. Chem. Int. Ed. 46 (24) (2007) 4574-4576. [2] G.S. Hammond, P. Wyatt, C.D. DeBoer, N.J. Turro, Photosensitized isomerization involving saturated centers, J. Am. Chem. Soc. 86 (12) (1964) 2532-2533. [3] C. Shen, M.J. Shang, H. Zhang, Y.H. Su, A UV-LEDs based photomicroreactor for mechanistic insights and kinetic studies in the norbornadiene photoisomerization, AlChE. J. 66 (2) (2020) e16841. [4] X.Y. Wang, T.H. Jia, L. Pan, Q. Liu, Y.M. Fang, J.J. Zou, X.W. Zhang, Review on the relationship between liquid aerospace fuel composition and their physicochemical properties, Trans. Tianjin Univ. 27 (2) (2021) 87-109. [5] J. Xiao, J.X. Zhang, L. Pan, C.X. Shi, X.W. Zhang, J.J. Zou, Photocatalytic synthesis of high-energy-density fuel: catalysts, mechanisms, and challenges, Trans. Tianjin Univ. 27 (4) (2021) 280-294. [6] A.P. Marchand, P.R. Dave, D. Rajapaksa, B.E. Arney Jr, J.L. Flippen-Anderson, R. Gilardi, C. George, Synthesis of 4, 4, 8, 8, 11, 11-hexanitropentacyclo [5.4.0.02, 6.03, 10.05, 9] undecane, J. Org. Chem. 54 (7) (1989) 1769-1771. [7] Y.K. Liu, C. Ma, C.X. Shi, L. Pan, J.J. Xie, S. Gong, Y.C. Zhang, G.K. Nie, X.W. Zhang, J.J. Zou, Synthesis of strained high-energy rocket bio-kerosene via cyclopropanation of myrcene, Fuel Process. Technol. 201 (2020) 106339. [8] H.S. Chung, C.S.H. Chen, R.A. Kremer, J.R. Boulton, G.W. Burdette, Recent developments in high-energy density liquid hydrocarbon fuels, Energy Fuels 13 (3) (1999) 641-649. [9] D.J. Trecker, R.S. Foote, J.P. Henry, J.E. McKeon, Photochemical reactions of metal-complexed olefins. II. dimerization of norbornene and Derivatives1, J. Am. Chem. Soc. 88 (13) (1966) 3021-3026. [10] Z.Y. Zhang, Z.Y. Liu, R.T. Guo, Y.Q. Zhao, X. Li, X.C. Wang, B(C6F5)3-catalyzed ring opening and isomerization of unactivated cyclopropanes, Angew. Chem. Int. Ed. 56 (14) (2017) 4028-4032. [11] P.E. Eaton, T.W. Cole, The cubane system, J. Am. Chem. Soc. 86 (5) (1964) 962-964. [12] J.R. Bell, N.B. Chapman, K.J. Toyne, ChemInform Abstract: preparation and properties of cage polycyclic systems part 3, cleavage in alkaline conditions of acetals derived from pentacyclo(5.3.0.0(2, 5).0(3, 9).0(4, 8)) decane and pentacyclo(4.3.0.0(2, 5).0(3, 8).0(4, 7)) nonane systems, Chemischer Informationsdienst 6 (38) (1975) chin.197538123. [13] J.C. Barborak, L. Watts, R. Pettit, A convenient synthesis of the cubane system, J. Am. Chem. Soc. 88 (6) (1966) 1328-1329. [14] P.E. Eaton, N. Nordari, J. Tsanaktsidis, S.P. Upadhyaya, Barton decarboxylation of cubane-1, 4-dicarboxylic acid: optimized procedures for cubanecarboxylic acid and cubane, Synthesis 1995 (5) (1995) 501-502. [15] A.P. Marchand, R.W. Allen, Improved synthesis of pentacyclo [5.4.0.02, 6.03, 10.05, 9] undecane, J. Org. Chem. 39 (11) (1974) 1596. [16] P. von R. Schleyer, A simple preparation of adamantane, J. Am. Chem. Soc. 79 (12) (1957) 3292. [17] Y. Chen, Y.M. Shu, M.H. Ai, W.B. Chen, C.W. Liu, S.Y. Zhang, S.J. Wang, H.P. Shi, J.J. Zou, L. Pan, Mechanism of Broensted-acid-promoted self-photosensitized [2+2] cycloaddition for synthesis of high-performance bio-spiral fuel, Green Energy Environ. 10 (3) (2025) 585-597. [18] J. Orrego-Hernandez, A. Dreos, K. Moth-Poulsen, Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications, Acc. Chem. Res. 53 (8) (2020) 1478-1487. [19] F.J. Hernandez, J.M. Cox, J.B. Li, R. Crespo-Otero, S.A. Lopez, Multiconfigurational calculations and photodynamics describe norbornadiene photochemistry, J. Org. Chem. 88 (9) (2023) 5311-5320. [20] A.U. Petersen, A.I. Hofmann, M. Fillols, M. Mansoe, M. Jevric, Z.H. Wang, C.J. Sumby, C. Muller, K. Moth-Poulsen, Solar energy storage by molecular norbornadiene-quadricyclane photoswitches: polymer film devices, Adv. Sci. (Weinh) 6 (12) (2019) 1900367. [21] A. Cuppoletti, J.P. Dinnocenzo, J.L. Goodman, I.R. Gould, Bond-coupled electron transfer reactions: photoisomerization of norbornadiene to quadricyclane, J. Phys. Chem. A 103 (51) (1999) 11253-11256. [22] S. Ma, Y. Chen, X.L. Liu, L. Pan, X.W. Zhang, J.J. Zou, Synthesis of caged high-energy-density fuel as potential high-performance energetic additive for liquid aerospace fuel, Fuel Process. Technol. 229 (2022) 107179. [23] G.E. Moore, K. Berman, A solid-liquid rocket propellant system, J. Jet Propuls. 26 (11) (1956) 965-968. [24] J.W. Xie, T.H. Jia, S. Gong, N. Liu, G.K. Nie, L. Pan, X.W. Zhang, J.J. Zou, Synthesis and thermal stability of dimethyl adamantanes as high-density and high-thermal-stability fuels, Fuel 260 (2020) 116424. [25] Y. Chen, C.X. Shi, T.H. Jia, Q.D. Cai, L. Pan, J.J. Xie, L. Wang, X.W. Zhang, J.J. Zou, Catalytic synthesis of high-energy-density jet-fuel-range polycyclic fuel by dimerization reaction, Fuel 308 (2022) 122077. [26] T.P. Yoon, Visible light photocatalysis: the development of photocatalytic radical ion cycloadditions, ACS Catal. 3 (5) (2013) 895-902. [27] Z. Lu, T.P. Yoon, Visible light photocatalysis of [2+2] styrene cycloadditions by energy transfer, Angew. Chem. Int. Ed. 51 (41) (2012) 10329-10332. [28] X.W. Xu, F. Yang, X.F. Zhang, Y.Z. Gao, W.P. Su, Visible-light-induced paterno-Buchi reaction of anthraquinones for the synthesis of spirocyclic oxetanes, Asian J. Org. Chem. 12 (5) (2023) e202300069. [29] Q. Shen, K. Cao, X.Q. Chen, X. Li, N.Y. Zhang, Y.B. Miao, J.H. Li, Photo-catalyst-free photomediated pinacol coupling of ketones/aldehydes by formate at room temperature, Green Chem. 25 (23) (2023) 9665-9671. [30] R. Wang, Z.D. Zheng, Z. Li, X.X. Xu, Photocatalytic C-C coupling and H2 production with tunable selectivity based on ZnxCd1-xS solid solutions for benzyl alcohol conversions under visible light, Chem. Eng. J. 480 (2024) 147970. [31] Y.G. Yan, G. Li, J.N. Ma, C. Wang, J.L. Xiao, D. Xue, Photoinduced generation of ketyl radicals and application in C-C coupling withoutexternal photocatalyst, Green Chem. 25 (10) (2023) 4129-4136. [32] W.G. Herkstroeter, A.A. Lamola, G.S. Hammond, Mechaisms of photochemical reactions in solution. XXVIII.1 values of triplet excitation energies of selected sensitizers, J. Am. Chem. Soc. 86 (21) (1964) 4537-4540. [33] S. Dutta, J.E. Erchinger, F. Strieth-Kalthoff, R. Kleinmans, F. Glorius, Energy transfer photocatalysis: exciting modes of reactivity, Chem. Soc. Rev. 53 (3) (2024) 1068-1089. [34] F. Strieth-Kalthoff, M.J. James, M. Teders, L. Pitzer, F. Glorius, Energy transfer catalysis mediated by visible light: principles, applications, directions, Chem. Soc. Rev. 47 (19) (2018) 7190-7202. [35] L.D. Elliott, S. Kayal, M.W. George, K. Booker-Milburn, Rational design of triplet sensitizers for the transfer of excited state photochemistry from UV to visible, J. Am. Chem. Soc. 142 (35) (2020) 14947-14956. [36] V. Ramamurthy, J. Sivaguru, Supramolecular photochemistry as a potential synthetic tool: photocycloaddition, Chem. Rev. 116 (17) (2016) 9914-9993. [37] Y. Chen, X.F. Zhang, X.L. Guo, M.H. Ai, Y.M. Shu, C.X. Shi, X.W. Zhang, J.J. Zou, L. Pan, Mechanism and kinetics of self-sensitized photocycloaddition of cyclohexenone and norbornene, AlChE. J. 70 (5) (2024) e18369. [38] N.N. Sun, J.J. Huang, J.Y. Qian, T.P. Zhou, J. Guo, L.Y. Tang, W.T. Zhang, Y.M. Deng, W.N. Zhao, G.J. Wu, R.Z. Liao, X. Chen, F.R. Zhong, Y.Z. Wu, Enantioselective [2+2]-cycloadditions with triplet photoenzymes, Nature 611 (7937) (2022) 715-720. [39] J.J. Huang, T.P. Zhou, N.N. Sun, H.B. Yu, X.X. Yu, R.Z. Liao, W.J. Yao, Z.F. Dai, G.J. Wu, F.R. Zhong, Accessing ladder-shape azetidine-fused indoline pentacycles through intermolecular regiodivergent aza-Paterno-Buchi reactions, Nat. Commun. 15 (1) (2024) 1431. [40] J. Ruan, Y.L. Lu, P. Hu, C.Y. Su, Asymmetric synthesis of strained multichiral spirocyclobutanes through cage-confined cross [2 + 2] photocycloaddition, J. Am. Chem. Soc. 147 (12) (2025) 10475-10484. [41] Y. Liu, Y. Chen, S. Ma, X.L. Liu, X.W. Zhang, J.J. Zou, L. Pan, Synthesis of advanced fuel with density higher than 1 g/mL by photoinduced [2 + 2] cycloaddition of norbornene, Fuel 318 (2022) 123629. [42] K. Chatelain, A. Nicolle, A. Ben Amara, L. Starck, L. Catoire, Structure-reactivity relationships in fuel stability: experimental and kinetic modeling study of isoparaffin autoxidation, Energy Fuels 32 (9) (2018) 9415-9426. [43] M. Skolniak, P. Bukrejewski, J. Frydrych, Analysis of changes in the properties of selected chemical compounds and motor fuels taking place during oxidation processes, . Storage Stability of Fuels. InTech, (2015), pp. [44] P.M. Rawson, C.A. Stansfield, R.L. Webster, D. Evans, U. Yildirim, The oxidative stability of synthetic fuels and fuel blends with monoaromatic blending components, Fuel 161 (2015) 97-104. [45] P.von R. Schleyer, M.M. Donaldson, The relative stability of bridged hydrocarbons. II. endo- and exo-trimethylenenorbornane. the formation of Adamantane1, 2, J. Am. Chem. Soc. 82 (17) (1960) 4645-4651. [46] J.W. Xie, C.X. Shi, Y.X. Zhao, L. Pan, X.W. Zhang, J.J. Zou, Synthesis and comprehensive fuel properties of mono-substituted alkyl adamantanes for advanced aerospace propulsion, Fuel Process. Technol. 218 (2021) 106842. [47] Y.M. Shu, X.Y. Wang, T.H. Jia, L. Pan, Q.F. Wang, X.W. Zhang, J.J. Zou, Acid-catalyzed rearrangement of biomass polycyclic sesquiterpene derivatives to high-performance alkyl-adamantanes, Chem. Eng. Sci. 277 (2023) 118851. |