[1] S.Y. Chang, J.K. Zhuo, S. Meng, S.Y. Qin, Q. Yao, Clean coal technologies in China: current status and future perspectives, Engineering 2 (4) (2016) 447-459. [2] L.J. Yan, X.J. Kong, R.F. Zhao, F. Li, K.C. Xie, Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis, Fuel Process. Technol. 138 (2015) 424-429. [3] T.L. Liu, J.P. Cao, X.Y. Zhao, J.X. Wang, X.Y. Ren, X. Fan, Y.P. Zhao, X.Y. Wei, In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst, Fuel Process. Technol. 160 (2017) 19-26. [4] T. Ding, S. Li, J. Xie, W. Song, J. Yao, W. Lin, Rapid pyrolysis of wheat straw in a bench-scale circulating fluidized-bed downer reactor, Chem. Eng. Technol. 35 (12) (2012) 2170-2176. [5] Z.Y. Liu, X.J. Guo, L. Shi, W.J. He, J.F. Wu, Q.Y. Liu, J.H. Liu, Reaction of volatiles-a crucial step in pyrolysis of coals, Fuel 154 (2015) 361-369. [6] Y. Zhu, Q.H. Wang, K.K. Li, J.M. Cen, M.X. Fang, C.D. Ying, Study on pressurized isothermal pyrolysis characteristics of low-rank coal in a pressurized micro-fluidized bed reaction analyzer, Energy 240 (2022) 122475. [7] P. Liang, Y.Q. Zhang, W.M. Jiang, A.F. Wei, T. Liu, J.F. Wu, Simulation study of Shenmu coal pyrolysis by gas heat carrier based on a moving bed, Energy Fuel. 29 (11) (2015) 7727-7733. [8] T.J. Chen, K. Zhang, M. Zheng, S.X. Yang, D. Yellezuome, R.D. Zhao, G.R. Liu, J.H. Wu, Thermal properties and product distribution from pyrolysis at high heating rate of Naomaohu coal, Fuel 292 (2021) 120238. [9] S.Q. Yang, L. Du, G.C. Ding, R.G. Liu, W.L. Song, S.G. Li, Filtration performance and modeling of granular bed for dust removal from coal pyrolytic vapors, Chin. J. Chem. Eng. 65 (2024) 35-42. [10] S.Q. Yang, L. Du, S.G. Li, W.L. Song, Performance of expanded perlite as granular bed filtration media: effect on coal pyrolytic products, J. Anal. Appl. Pyrolysis 166 (2022) 105617. [11] P.J. Woolcock, R.C. Brown, A review of cleaning technologies for biomass-derived syngas, Biomass Bioenergy 52 (2013) 54-84. [12] T. Dziubak, Experimental investigation of possibilities to improve filtration efficiency of tangential inlet return cyclones by modification of their design, Energies 15 (11) (2022) 3871. [13] M.S. Zhan, G.G. Sun, S. Yan, J.Q. Chen, M.H. You, Filtration performance of coal pyrolysis flying char particles in a granular bed filter, Energy Fuel. 32 (2) (2018) 1070-1079. [14] Q.L. Chen, M.X. Fang, J.M. Cen, Y.F. Zhao, Q.H. Wang, Y.W. Wang, Electrostatic precipitation under coal pyrolysis gas at high temperatures, Powder Technol. 362 (2020) 1-10. [15] F.X. Hu, G.H. Yang, G.Z. Ding, Z. Li, K.S. Du, Z.F. Hu, S.R. Tian, Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter, Appl. Energy 170 (2016) 47-57. [16] S.R. Tian, G.H. Yang, Z. Li, K.Y. Shi, G.Z. Ding, F.X. Hu, Cascade filtration properties of a dual-layer granular bed filter, Powder Technol. 301 (2016) 545-556. [17] A. Charvet, L. Wingert, N. Bardin-Monnier, S. Pacault, F. Fournier, D. Bemer, D. Thomas, Multi-staged granular beds applied to the filtration of ultrafine particles: an optimization of collector diameters, Powder Technol. 342 (2019) 341-347. [18] J.P. Du, C.P. Liu, S.W. Yin, A. Rehman, Y.L. Ding, L. Wang, Particle size distribution in a granular bed filter, Particuology 58 (2021) 108-117. [19] Y.S. Yu, Y.B. Tao, Z. Ma, Y.L. He, Experimental study and optimization on filtration and fluid flow performance of a granular bed filter, Powder Technol. 333 (2018) 449-457. [20] M.H. You, Z.Y. Li, M.S. Zhan, M.L. Liu, G.G. Sun, J.Q. Chen, Flow simulation and performance analysis of a cyclone-granular bed filter, Powder Technol. 361 (2020) 210-219. [21] Y.S. Chen, S.S. Hsiau, J.R. Syu, Y.L. Chang, Influence of removal efficiency on a moving granular bed filter, Chem. Eng. Process. Process Intensif. 149 (2020) 107836. [22] S.W. Yin, Y. He, L. Wang, C.P. Liu, L.G. Tong, Y.L. Ding, Particulate flow characteristics in a novel moving granular bed, Powder Technol. 340 (2018) 217-226. [23] H. Lv, Y.X. Liu, Y.Y. Dong, Y.P. Fan, C.X. Lu, Experimental study on filtration performance of the moving bed granular filter with axial flow, Particuology 72 (2023) 17-28. [24] L. Guan, Z.Z. Gu, Z.L. Yuan, L.J. Yang, W.Q. Zhong, Y.Y. Wu, S.S. Sun, Numerical study on the penetration of ash particles in a three-dimensional randomly packed granular filter, Fuel 163 (2016) 122-128. [25] L. Guan, Z.L. Yuan, Z.Z. Gu, L.J. Yang, W.Q. Zhong, Y.Y. Wu, S.S. Sun, C.H. Gu, Numerical simulation of ash particle deposition characteristics on the granular surface of a randomly packed granular filter, Powder Technol. 314 (2017) 78-88. [26] F.L. Wang, Y.L. He, S.Z. Tang, F.A. Kulacki, Y.B. Tao, Particle filtration characteristics of typical packing granular filters used in hot gas clean-up, Fuel 234 (2018) 9-19. [27] F.L. Wang, Y.L. He, S.Z. Tang, F.A. Kulacki, Y.B. Tao, Real-time particle filtration of granular filters for hot gas clean-up, Fuel 237 (2019) 308-319. [28] F.L. Wang, Y.L. He, S.Z. Tang, F.A. Kulacki, Y.B. Tao, Multi-objective optimization of a dual-layer granular filter for hot gas clean-up by using genetic algorithm, Appl. Energy 248 (2019) 463-474. [29] F.L. Wang, S.Z. Tang, Y.L. He, F.A. Kulacki, Y.B. Tao, Parameter study of filtration characteristics of granular filters for hot gas clean-up, Powder Technol. 353 (2019) 267-275. [30] J.L. Chen, X.F. Li, X.L. Huai, Y.W. Wang, J.Z. Zhou, Numerical study of collection efficiency and heat-transfer characteristics of packed granular filter, Particuology 46 (2019) 75-82. [31] J.P. Wang, H.Q. Zou, H. Chen, H.B. Ruan, G.H. Yang, Numerical simulation of dual-layer granular bed filtration based on particle collision rebound effect, Sep. Purif. Technol. 330 (2024) 125490. [32] Z.Z. Xie, S. Wang, Y.S. Shen, Particle-scale modelling of rapid granular filtration in a dual-media filter, Sep. Purif. Technol. 302 (2022) 122076. [33] H.Q. Zou, J.P. Wang, Y.J. Li, F.R. Xu, Z.Y. Dai, G.H. Yang, Numerical simulation of dual-layer granular bed filtration under external electric field, J. Environ. Chem. Eng. 12 (2) (2024) 112342. [34] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (8) (1994) 1598-1605. [35] T. D'Ottavio, S. L. Goren, Aerosol capture in granular beds in the impaction dominated regime, Aerosol Sci. Technol. 2(2) (2007) 91-108. [36] Y. Jung, S.A. Walata, T.E. Chi, Experimental determination of the initial collection efficiency of granular beds in the inertial-impaction-dominated region, Aerosol Sci. Technol. 11 (2) (1989) 168-182. |