[1] A.K. Patidar, R.K. Singh, T. Choudhury, The prominence of carbon capture, utilization and storage technique, a special consideration on India, Gas Sci. Eng. 115 (2023) 204999. [2] J.X. Du, W. Yang, L.L. Xu, L. Bei, S.Y. Lei, W. Li, H.T. Liu, B. Wang, L.S. Sun, Review on post-combustion CO2 capture by amine blended solvents and aqueous ammonia, Chem. Eng. J. 488 (2024) 150954. [3] S. Fawzy, A.I. Osman, J. Doran, D.W. Rooney, Strategies for mitigation of climate change: a review, Environ. Chem. Lett. 18 (6) (2020) 2069-2094. [4] S.Y. Chen, J.F. Liu, Q. Zhang, F. Teng, B.C. McLellan, A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality, Renew. Sustain. Energy Rev. 167 (2022) 112537. [5] K.O. Yoro, M.O. Daramola, P.T. Sekoai, E.K. Armah, U.N. Wilson, Advances and emerging techniques for energy recovery during absorptive CO2 capture: a review of process and non-process integration-based strategies, Renew. Sustain. Energy Rev. 147 (2021) 111241. [6] S.H. Zhang, Y. Shen, C.H. Zheng, Q.Q. Xu, Y.F. Sun, M. Huang, L. Li, X.W. Yang, H. Zhou, H.L. Ma, Z.D. Li, Y.H. Zhang, W.Q. Liu, X. Gao, Recent advances, challenges, and perspectives on carbon capture, Front. Environ. Sci. Eng. 18 (6) (2024) 75. [7] K. Storrs, I. Lyhne, R. Drustrup, A comprehensive framework for feasibility of CCUS deployment: a meta-review of literature on factors impacting CCUS deployment, Int. J. Greenh. Gas Control 125 (2023) 103878. [8] A. Dubey, A. Arora, Advancements in carbon capture technologies: a review, J. Clean. Prod. 373 (2022) 133932. [9] G.Z. Liu, B.F. Cai, Q. Li, X. Zhang, T. Ouyang, China's pathways of CO2 capture, utilization and storage under carbon neutrality vision 2060, Carbon Manag. 13 (1) (2022) 435-449. [10] H. Hekmatmehr, A. Esmaeili, M. Pourmahdi, S. Atashrouz, A. Abedi, M. Ali Abuswer, D. Nedeljkovic, M. Latifi, S. Farag, A. Mohaddespour, Carbon capture technologies: a review on technology readiness level, Fuel 363 (2024) 130898. [11] Z.Z. Zhang, Y.C. Ge, L. Yang, H. Xing, F. Liu, X. Yang, Q.F. Li, Y. Li, Enhancing CO2 absorption with compact multiflow absorber: evaluation of operational factors, Ind. Eng. Chem. Res. 63 (13) (2024) 5618-5628. [12] D. Liu, C. Wan, X. Liu, Y. Yu, Research advances in chemical absorbents for carbon dioxide capture, Low-Carbon Chem. Chem. Eng. 49 (2024) 94-104+112. [13] L.L. Li, X. He, P. Li, S. Chen, C.X. Hai, Y.X. Sun, Q. Xu, S.D. Dong, L.X. Ma, Y. Zhou, Efficient carbon dioxide capture and reduced desorption energy consumption with bifunctional aluminium-modified MWCNTs catalyst, Fuel 385 (2025) 11. [14] B. Aghel, S. Janati, S. Wongwises, M.S. Shadloo, Review on CO2 capture by blended amine solutions, Int. J. Greenh. Gas Control 119 (2022) 103715. [15] B.H. Lv, K.X. Yang, X.B. Zhou, Z.M. Zhou, G.H. Jing, 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture, Appl. Energy 264 (2020) 114703. [16] W.H. Jiang, Y.C. Lin, C.Q. Sun, Y. Sun, Y.L. Zhu, Comparative review for enhancing CO2 capture efficiency with mixed amine systems and catalysts, Molecules 29 (19) (2024) 4618. [17] S. Nakrak, P. Tontiwachwuthikul, H.X. Gao, Z.W. Liang, T. Sema, Comprehensive mass transfer analysis of CO2 absorption in high potential ternary AMP-PZ-MEA solvent using three-level factorial design, Environ. Sci. Pollut. Res. Int. 30 (4) (2023) 10001-10023. [18] H.C. Shi, X.F. Cheng, J.C. Peng, H.L. Feng, P. Tontiwachwuthikul, J.W. Hu, The CO2 absorption and desorption analysis of tri-solvent MEA + EAE + AMP compared with MEA + BEA + AMP along with coordination effects evaluation, Environ. Sci. Pollut. Res. Int. 29 (27) (2022) 40686-40700. [19] Y.S. Wang, Y.N. Dong, L.L. Zhang, G.W. Chu, H.K. Zou, B.C. Sun, X.F. Zeng, Carbon dioxide capture by non-aqueous blend in rotating packed bed reactor: absorption and desorption investigation, Sep. Purif. Technol. 269 (2021) 118714. [20] F.A. Chowdhury, K. Goto, H. Yamada, Y. Matsuzaki, A screening study of alcohol solvents for alkanolamine-based CO2 capture, Int. J. Greenh. Gas Control 99 (2020) 103081. [21] Y.J. Zhang, J. Dong, P. Ning, L.L. Wang, J.H. Wang, Y.X. Ma, X.Q. Wang, Investigation of CO2 capture performance of polyamine/organic alcohol ether non-aqueous absorbent regulated by ethylene glycol, J. Environ. Chem. Eng. 12 (5) (2024) 113694. [22] L.T. Yin, X.J. Li, L. Zhang, J.W. Li, Characteristics of carbon dioxide desorption from MEA-based organic solvent absorbents, Int. J. Greenh. Gas Control 104 (2021) 103224. [23] F. Bougie, D. Pokras, X.F. Fan, Novel non-aqueous MEA solutions for CO2 capture, Int. J. Greenh. Gas Control 86 (2019) 34-42. [24] S.M. Chen, S.Y. Chen, Y.C. Zhang, L. Qin, C. Guo, J. Chen, Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions, Int. J. Greenh. Gas Control 47 (2016) 151-158. [25] Z.L. Chen, T. Wang, C. Li, M.X. Fang, W. Chen, X.M. Hu, W. Zhang, L. Zhang, W.Y. Fan, S.J. Zeng, Research on CO2 capture performance of DMEDA water-lean absorbents based on molecular dynamics, Sep. Purif. Technol. 354 (2025) 128924. [26] Y.C. Ge, Z.Y. Wang, L. Yang, X.X. Heng, Z.Z. Zhang, Y. Wang, F. Liu, X. Yang, B. Liu, K.L. Liu, CO2 capture performance and foaming mechanism of modified amine-based absorbents: a study based on molecular dynamics, Carbon Capture Sci. Technol. 15 (2025) 100384. [27] G. Gao, W.F. Jiang, X.S. Li, Z.H. Zhao, C. Jiang, C. Luo, F. Wu, L.Q. Zhang, Novel assessment of highly efficient polyamines for post-combustion CO2 capture: absorption heat, reaction rate, CO2 cyclic capacity, and phase change behavior, Sep. Purif. Technol. 306 (2023) 122615. [28] T.T. Ping, Y. Dong, S.F. Shen, Energy-efficient CO2 capture using nonaqueous absorbents of secondary alkanolamines with a 2-butoxyethanol cosolvent, ACS Sustain. Chem. Eng. 8 (49) (2020) 18071-18082. [29] W. Conway, S. Bruggink, Y. Beyad, W.L. Luo, I. Melian-Cabrera, G. Puxty, P. Feron, CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes, Chem. Eng. Sci. 126 (2015) 446-454. [30] H.C. Shi, M.Q. Cui, J.X. Fu, W.H. Dai, M. Huang, J.J. Han, L.Q. Quan, P. Tontiwachwuthikul, Z.W. Liang, Application of “coordinative effect” into tri-solvent MEA+BEA+AMP blends at concentrations of 0.1 + 2 + 2~0.5 + 2 + 2 mol/L with absorption, desorption and mass transfer analyses, Int. J. Greenh. Gas Control 107 (2021) 103267. [31] R. Ramezani, I.M. Bernhardsen, R. Di Felice, H.K. Knuutila, Physical properties and reaction kinetics of CO2 absorption into unloaded and CO2 loaded viscous monoethanolamine (MEA) solution, J. Mol. Liq. 329 (2021) 115569. [32] A.K. Ziyada, A. Osman, A.A. Elbashir, F. Rajab, A.M. Khan, M.M. Ali Omar, C.D. Wilfred, Effect of allyl, benzyl, and hydroxyl groups on the CO2 absorption capacity of propanenitrile imidazolium-based ionic liquids incorporating dioctylsulfosuccinate anion, Ionics 29 (11) (2023) 4659-4667. [33] H.Y. Hu, W.J. Xie, H.R. Li, L.N. He, Ether chain-modified alkanolguanidine for CO2 capture and subsequent conversion, Carbon Capture Sci. Technol. 13 (2024) 100284. [34] S. Liu, H. Ling, J. Lv, H.X. Gao, Y.Q. Na, Z.W. Liang, New insights and assessment of primary alkanolamine/sulfolane biphasic solutions for post-combustion CO2 capture: absorption, desorption, phase separation, and technological process, Ind. Eng. Chem. Res. 58 (44) (2019) 20461-20471. [35] Z. Chen, Research progress of water-lean solvents system for post-combustion CO2 capture, Petrol. New Energy 35 (2023) 74-82+100. [36] W. Tian, K. Ma, J.Y. Ji, S.Y. Tang, S. Zhong, C.J. Liu, H.R. Yue, B. Liang, Nonaqueous MEA/PEG200 absorbent with high efficiency and low energy consumption for CO2 capture, Ind. Eng. Chem. Res. 60 (10) (2021) 3871-3880. [37] K. Li, W.D. Wu, L. Peng, H. Zhang, Study on viscosity characteristics of CO2-ionic liquid mixture used for compression-absorption refrigeration systems, J. Mol. Liq. 337 (2021) 116240. [38] M. Zhao, L. Huang, Y.S. Gao, Z.L. Wang, S.Y. Liang, X.C. Zhu, Q. Wang, H. He, D. O'Hare, Design of ultra-stable solid amine adsorbents and mechanisms of hydroxyl group-dependent deactivation for reversible CO2 capture from flue gas, Nano-Micro Lett. 17 (1) (2025) 170. [39] B. Aghel, S. Sahraie, E. Heidaryan, Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor, Energy 201 (2020) 117618. [40] M.K. Kang, S.B. Jeon, J.H. Cho, J.S. Kim, K.J. Oh, Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions, Int. J. Greenh. Gas Control 63 (2017) 281-288. [41] H. Guo, C.X. Li, X.Q. Shi, H. Li, S.F. Shen, Nonaqueous amine-based absorbents for energy efficient CO2 capture, Appl. Energy 239 (2019) 725-734. [42] J. Gao, J. Yin, F.F. Zhu, X. Chen, M. Tong, W.Z. Kang, Y.B. Zhou, J. Lu, Study on absorption and regeneration performance of novel hybrid solutions for CO2 capture, China Pet. Process. Petrochem. Technol. 18 (2016) 66-72. [43] U.H. Bhatti, S. Nam, S. Park, I.H. Baek, Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration, ACS Sustainable Chem. Eng. 6 (9) (2018) 12079-12087. [44] Y.C. Ge, Z.Z. Zhang, L. Yang, F. Liu, X. Yang, K.L. Liu, Surfactant-modified monoethanolamine for better foaming to enhance CO2 removal efficiency, Chem. Eng. J. 498 (2024) 155440. [45] X.L. Li, X.B. Zhou, J.W. Wei, Y.M. Fan, L. Liao, H.Q. Wang, Reducing the energy penalty and corrosion of carbon dioxide capture using a novel nonaqueous monoethanolamine-based biphasic solvent, Sep. Purif. Technol. 265 (2021) 118481. [46] S. Wada, T. Kushida, H. Itagaki, T. Shibue, H. Kadowaki, J. Arakawa, Y. Furukawa, 13C NMR study on carbamate hydrolysis reactions in aqueous amine/CO2 solutions, Int. J. Greenh. Gas Control 104 (2021) 103175. [47] T.B. Jorgensen, K.L. Liu, J.G. Thompson, Examining the reactions of ethanolamine's thermal degradation compounds in carbon capture through 1H NMR and 13C NMR, Ind. Eng. Chem. Res. 63 (25) (2024) 10863-10878. [48] R.J. Wang, S.S. Liu, L.D. Wang, Q.W. Li, S.H. Zhang, B. Chen, L. Jiang, Y.F. Zhang, Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas, Appl. Energy 242 (2019) 302-310. [49] F. Barzagli, F. Mani, M. Peruzzini, A comparative study of the CO2 absorption in some solvent-free alkanolamines and in aqueous monoethanolamine (MEA), Environ. Sci. Technol. 50 (13) (2016) 7239-7246. [50] Y.M. Zhao, Y.C. Zhang, Q. Liu, X.W. Guo, Y. Cao, N. Xu, T. Qi, Y.B. Chen, S.Y. Chen, Energy-efficient carbon dioxide capture using piperazine (PZ) activated EMEA+DEEA water lean solvent: performance and mechanism, Sep. Purif. Technol. 316 (2023) 123761. [51] G.Y. Chen, G.J. Chen, M. Peruzzini, R. Zhang, F. Barzagli, Understanding the potential benefits of blended ternary amine systems for CO2 capture processes through 13C NMR speciation study and energy cost analysis, Sep. Purif. Technol. 291 (2022) 120939. [52] F. Barzagli, F. Mani, Direct CO2 air capture with aqueous 2-(ethylamino)ethanol and 2-(2-aminoethoxy)ethanol: 13C NMR speciation of the absorbed solutions and study of the sorbent regeneration improved by a transition metal oxide catalyst, Inorg. Chim. Acta. 518 (2021) 120256. [53] G.J. Chen, G.Y. Chen, M. Peruzzini, F. Barzagli, R. Zhang, Investigating the performance of ethanolamine and benzylamine blends as promising sorbents for postcombustion CO2 capture through 13C NMR speciation and heat of CO2 absorption analysis, Energy Fuel. 36 (16) (2022) 9203-9212. [54] X.B. Zhou, C. Liu, Y.M. Fan, L.H. Zhang, S. Tang, S.P. Mo, Y.N. Zhu, Z.Q. Zhu, Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: performance, mechanism, and thermodynamics, Energy 255 (2022) 124570. [55] X.S. Li, J. Liu, W.F. Jiang, G. Gao, F. Wu, C. Luo, L.Q. Zhang, Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O, Sep. Purif. Technol. 275 (2021) 119181. [56] A. Shohrat, M. Zhang, H. Hu, X.Y. Yang, L. Liu, H. Huang, Mechanism study on CO2 capture by ionic liquids made from TFA blended with MEA and MDEA, Int. J. Greenh. Gas Control 119 (2022) 103709. [57] Z.Z. Zhang, Y.C. Ge, L. Yang, F. Liu, X. Yang, Q.F. Li, Y. Li, K.L. Liu, Innovative compact multi-fluid absorber for CO2 capture using advanced absorbents and microbubble technology, Sep. Purif. Technol. 362 (2025) 131744. [58] Y.C. Guo, C. Cai, Y.H. Zhang, Observation of conformational changes in ethylene glycol-water complexes by FTIR-ATR spectroscopy and computational studies, 8 (5) (2018) 055308. [59] C.H. Sun, P.K. Dutta, Infrared spectroscopic study of reaction of carbon dioxide with aqueous monoethanolamine solutions, Ind. Eng. Chem. Res. 55 (22) (2016) 6276-6283. [60] W.B. Qian, J. Hao, M.J. Zhu, P.X. Sun, K. Zhang, X.X. Wang, X. Xu, Development of green solvents for efficient post-combustion CO2 capture with good regeneration performance, J. CO2 Util. 59 (2022) 101955. [61] T.T. Ping, Y. Dong, S.F. Shen, Densities, viscosities and spectroscopic study of partially CO2-loaded nonaqueous blends of 2-butoxyethanol with 2-(ethylamino)ethanol and 2-(butylamino)ethanol at temperatures of (293.15 to 353.15) K, J. Mol. Liq. 312 (2020) 113389. [62] A. Syauqi, A. Allamyradov, C. Quintana, V.M. Nagulapati, B. Brigljevic, H. Lim, Integrated machine learning/FT-IR framework for efficient solvent composition analysis in carbon capture, Ind. Eng. Chem. Res. 63 (39) (2024) 16847-16855. [63] F.L. Zhang, W.B. Gu, J.W. Zhang, Z.P. Zheng, Experiment on a new biphasic absorber composed of TEPA/DEEA for capturing CO2 and its phase transition mechanism, Chin. J. Chem. Eng. 81 (2025) 64-75. [64] G.C. Lu, S. Farrukh, X.F. Fan, Research progress of non-aqueous absorbents for carbon dioxide capture with low energy consumption: a review, Fuel 391 (2025) 134740. [65] G.Y. Zhang, J.S. Liu, J. Qian, X.Z. Zhang, Z.H. Liu, Review of research progress and stability studies of amine-based biphasic absorbents for CO2 capture, J. Ind. Eng. Chem. 134 (2024) 28-50. |