1 Yu, Z.J., Liu, L.J., “Effect of microwave energy on chain propagation of poly(ε-caprolactone) in benzoic acid-initiated ring opening polymerization of ε-caprolactone”, Eur. Polym. J., 40, 71-80 (2004).2 Christian, P., Jones, I.A., “Polymerisation and stabilisation of polycaprolactone using a borontrifluoride-glycerol catalyst system”, Polym. J., 42, 3989-3994 (2001).3 Jiang, G., Evans, M.E., Jones, I.A., Rudd, C.D., Scotchford, C.A., Walker, G.S., “Preparation of poly(ε-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant”, Biomaterials, 26, 2281-2288 (2005).4 Elomaa, L., Teixeira, S., Hakala, R., Korhonen, H., Grijpma, D.W., “Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography”, Acta Biomater., 7, 3850-3856 (2011).5 Kiskan, B., Yagci, Y., “Synthesis and characterization of naphthoxazine functional poly(ε-caprolactone)”, Polym. J., 46, 11690-11697 (2005).6 Chang, K.Y., Lee, Y.D., “Ring-opening polymerization of ε-caprolactone initiated by the antitumor agent doxifluridine”, Acta Biomater, 5, 1075-1081 (2009).7 Bikiaris, D.N., Papageorgiou, G.Z., Achilias, D.S., Pavlidou, E., Stergiou, A., “Miscibility and enzymatic degradation studies of poly(ε-caprolactone)/poly(propylene succinate) blends”, Eur. Polym. J., 43, 2491-2503 (2007).8 Sivalingam, G., Karthik, R., Madras, G., “Blends of poly(ε-caprolactone) and poly(vinyl acetate): Mechanical properties and thermal degradation”, Polym. Degrad. Stab., 84, 345-351 (2004).9 Gao, C.K., Xu, Z.F., Qin, X., “Empirical study of degradation performance of silk-fiber-reinforced polycaprolactone composite in vivo”, J. Trauma Surg., 6, 541-543 (2009).10 Wang, N., Yu, J.G., Ma, X.F., “Progress on research of biodegradable thermoplastic materials”, Petrochem. Technol., 36, 1-6 (2007). (in Chinese)11 Zhang, Y.Q., Tang, L.N., Sun, L.L., Bao, J.B., Song, C.X., Huang, L.Q., Liu, K.X., Tian, Y., Tian, G., Li, Z., Sun, H.F., Mei, L., “A novel paclitaxel-loaded poly(ε-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment”, Acta Biomater, 6, 2045-2052 (2010).12 Hernán Pérez de la Ossa, D., Ligresti, A., Aberturas, M.R., Molpeceres, J., Di Marzo, V., Torres Suárez A.I., “Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: Development, characterization and in vitro evaluation of their antitumoral efficacy”, J. Control. Release, 1-6 (2012).13 Ciapetti, G., Ambrosio, L., Savarino, L., Granchi, D., Cenn, E., Baldini, N., Pagani, S., Guizzard, S., Causa, F., Giunti, A., “Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: A preliminary study”, Biomaterials, 24, 3815-3824 (2003).14 Kaneda, K., Yamashita, T., “Heterogeneous Baeyer-Villiger oxidation of ketones using m-chloroperbenzoic acid catalyzed by hydrotalcites”, Tetrahedron Lett., 37, 4555-4558 (1996).15 Anoune, N., Hannachi, H., Lantéri, P., Longeray, R., Arnaud, C., “Use of theoretical chemistry to explain Baeyer-Villiger oxidations of methoxy aromatic aldehydes”, J. Chem. Educ., 75, 1920-1923 (1998).16 Lambert, A., Elings, J.A., Macquarrie, D.J., Carr, G., Clark, J.H., “The Baeyer-Villiger oxidation of ketones using HMS-supported peroxycarboxylic acids”, Synlett., 7, 1052-1054 (2000).17 Steffen, R.A., Teixeira, S., Rinaldi, R., Sepulveda, J., Rinaldi, R., Schuchardt, U., “Alumina-catalyzed Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide”, J. Mol. Catal. A Chem., 287, 41-44 (2008).18 Ruiz, J.R., Jimenez-Sanchidrian, C., Llamas, R., “Hydrotalcites as catalysts for the Baeyer-Villiger oxidation of cyclic ketones with hydrogen peroxide/benzonitrile”, Tetrahedron Lett., 62, 11697-11703 (2006).19 Llamas, R., Jimenez-Sanchidrian, C., Ruiz, J.R., “Heterogeneous Baeyer-Villiger oxidation of ketones with H2O2/nitrile, using Mg/Al hydrotalcite as catalyst”, Tetrahedron Lett., 63, 1435-1439 (2007).20 Llamas, R., Jimenez-Sanchidrian, C., Ruiz, J.R., “Environmentally friendly Baeyer-Villiger oxidation with H2O2/nitrile over Mg(OH)2 and MgO”, Appl. Catal., B, 72, 18-25 (2007).21 Subramanian, H., Nettleton, E.G., Budhi, S., Koodali, R.T., “Baeyer-Villiger oxidation of cyclic ketones using Fe containing MCM-48 cubic mesoporous materials”, J. Mol. Catal. A Chem., 330, 66-72 (2010).22 Pillai, U.R., Sahle-Demessie, E., “Sn-exchanged hydrotalcites as catalysts for clean and selective Baeyer-Villiger oxidation of ketones using hydrogen peroxide”, J. Mol. Catal. A Chem., 191, 93-100 (2003).23 Kawabata, T., Fujisaki, N., Shishido, T., Nomura, K., Sano, T., Takehira, K., “Improved Fe/Mg-Al hydrotalcite catalyst for Baeyer-Villiger oxidation of ketones with molecular oxygen and benzaldehyde”, J. Mol. Catal. A Chem., 253, 279-289 (2006).24 Dutta, B., Jana, S., Bhunia, S., Honda, H., Koner, S., “Heterogeneous Baeyer-Villiger oxidation of cyclic ketones using tert-BuOOH as oxidant”, Appl. Catal. A, 382, 90-98 (2010).25 Jiménez-Sanchidrian, C., Hidalgo, J.M., Llamas, R., “Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide/benzonitrile over hydrotalcites as catalysts”, Appl. Catal., A, 312, 86-94 (2006).26 Corma, A., Navarro, M.T., Nemeth, L., Renz, M., “Sn-MCM-41 a heterogeneous selective catalyst for the Baeyer-Villiger oxidation with hydrogen peroxide”, Chem. Commun., 21, 2190-2191 (2001).27 Yao, C.S., Weng, H.S., “Liquid-phase oxidation of cyclohexane and cyclohexanone over supported cerium oxide catalysts”, Ind. Eng. Chem. Res., 37, 2647-2653 (1998).28 Stamicarbon, N.V., “Caprolactone from cyclohexanone”, NL Pat., 6703001 (1968).29 Asahi Chemical Industry Co., Ltd., “Method for producing lactones and carboxylicacids”, GB Pat., 1103885 (1968).30 Mandal, D., Ahamad, A., Khan, M.I., Kumar, R., “Process for preparation of a lactone from a cyclic ketone”, US Pat., 6559322 (2003).31 Mandal, D., Ahamad, A., Khan, M.I., “Biocatalytic transformation of cyclohex anone by Fusarium SP”, J. Mol. Catal. A Chem., 181, 237-241 (2002).32 Baeyer, A., Villiger, V., “Einwirkung des Caróschen Reagens auf Keton”, Ber. Dtsch. Chem. Ges., 32, 3625-3633 (1998). |