[1] Y.E. Miliána, A. Gutiérreza, M. Grágedaa, S. Ushak, A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties, Renew. Sust. Energ. Rev. 73(2017) 983-999. [2] M. Kenisarin, K. Mahkamov, Passive thermal control in residential buildings using phase change materials, Renew. Sust. Energ. Rev. 55(2016) 371-398. [3] S.Y. Mu, J. Guo, Y.M. Gong, S. Zhang, Y. Yu, Synthesis and thermal properties of poly(styrene-co-acrylonitrile)-graft-polyethylene glycol copolymers as novel solid-solid phase change materials for thermal energy storage, Chin. Chem. Lett. 26(2015) 1364-1366. [4] X. Huang, G. Alva, Y. Jia, G. Fang, Morphological characterization and applications of phase change materials in thermal energy storage:A review, Renew. Sust. Energ. Rev. 72(2017) 128-145. [5] S. Khare, M. Dell'Amico, C. Knight, S. Mcgarry, Selection of materials for high temperature latent heat energy storage, Sol. Energy Mater. Sol. Cells 107(2012) 20-27. [6] Y. Konuklu, M. Unal, H.O. Paksoy, Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 120(2014) 536-542. [7] W. Su, J. Darkwa, G. Kokogiannakis, Review of solid-liquid phase change materials and their encapsulation technologies, Renew. Sust. Energ. Rev. 48(2015) 373-391. [8] A. Sharma, A. Shukla, Thermal cycle test of binary mixtures of some fatty acids as phasechange materials for building applications, Energy Build. 99(2015) 196-203. [9] Y. Wang, T. Xia, H. Feng, H. Zheng, Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage, Renew. Energy 36(2011) 1814-1820. [10] X. Huang, G. Alva, L. Liu, G. Fang, Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form-stable thermal energy storage materials, Sol. Energy Mater. Sol. Cells 166(2017) 157-166. [11] Y. Wang, Y. Zhang, W. Yang, H. Ji, Selection of low-temperature phase-change materials for thermal energy storage based on the VIKOR method, Energy Technol. 3(2015) 84-89. [12] A. Jamekhorshid, S.M. Sadrameli, M. Farid, A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium, Renew. Sust. Energ. Rev. 31(2014) 531-542. [13] K. Tumirah, M.Z. Hussein, Z. Zulkarnain, R. Rafeadah, Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage, Energy 66(2014) 881-890. [14] L. Bayés-García, L. Ventolà, R. Cordobilla, R. Benages, T. Calvet, M.A. Cuevas-Diarte, Phase change materials (PCM) microcapsules with different shell compositions:Preparation, characterization and thermal stability, Sol. Energy Mater. Sol. Cells 94(2010) 1235-1240. [15] T. Wang, S. Wang, W. Wu, Experimental study on effective thermal conductivity of microcapsules based phase change composites, Int. J. Heat Mass Transf. 109(2017) 930-937. [16] Y.H. Ma, X.D. Chu, G.Y. Tang, Y. Yao, The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell, J. Colloid Interface Sci. 392(2013) 407-414. [17] J.R. Li, L.H. He, T.Z. Liu, X.J. Cao, H.Z. Zhu, Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells 118(2013) 48-53. [18] C. Alkan, A. Sarı, A. Karaipekli, Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage, Energy Convers. Manag. 52(2011) 687-692. [19] C. Alkan, A. Sari, Fatty acid/poly (methyl methacrylate) (PMMA) blends as formstable phase change materials for latent heat thermal energy storage, Sol. Energy 82(2008) 118-124. [20] S. Ma, G. Song, W. Li, P. Fan, G. Tang, UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin, Sol. Energy Mater. Sol. Cells 94(2010) 1643-1647. [21] R. Al-Shannaqetal, M. Farid, S. Al-Muhtaseb, J. Kurdi, Emulsion stability and crosslinking of PMMA microcapsules containing phase change materials, Sol. Energy Mater. Sol. Cells 32(2015) 311-318. [22] P. Chaiyasat, S. Noppalit, M. Okubo, A. Chaiyasat, Do encapsulated heat storage materials really retain their original thermal properties? Phys. Chem. Chem. Phys. 17(2015) 1053-1059. [23] A. Sarı, C. Alkan, K. Karaipekli, Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage, Appl. Energy 87(2010) 1529-1534. [24] J. Huang, T.Y. Wang, P.P. Zhu, J.B. Xiao, Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials, Thermochim. Acta 557(2013) 1-6. [25] A. Sari, C. Alkan, A. Karaipekli, O. Uzun, Microencapsulated n-octacosane as phase change material for thermal energy storage, Sol. Energy 93(2009) 1757-1763. [26] C. Alkan, A. Sari, A. Karaipekli, O. Uzun, Preparation, characterization and thermal properties of microencapsulated phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 93(2009) 143-147. [27] L. Wang, D. Meng, Fatty acid eutectic/polymethyl methacrylate composite as formstable phase change material for thermal energy storage, Appl. Energy 87(2010) 2660-2665. [28] A.R. Shirin-Abadi, A.R. Mahdavian, S. Khoee, New approach for the elucidation of PCM nanocapsules through miniemulsion polymerization with an acrylic shell, Macromolecules 44(2011) 7405-7414. [29] Y. Wang, H. Shi, T.D. Xia, T. Zhang, H.X. Feng, Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated, Mater. Chem. Phys. 135(2012) 181-187. [30] Y. Wang, Y. Zhang, T.D. Xia, W.J. Zhao, W.H. Yang, Effects of fabricated technology on particle size distribution and thermal properties of stearic-eicosanoic acid/polymethylmethacrylate nanocapsules, Sol. Energy Mater. Sol. Cells 120(2014) 481-490. [31] A. Chemtob, B. Kunstler, C. Croutxé-Barghorn, S. Fouchard, Photoinduced miniemulsion polymerization, Colloid Polym. Sci. 288(2010) 579-587. [32] M.Y. Wang, B.T. Tang, S.F. Zhang, Organic, cross-linking, and shape-stabilized solar thermal energy storage materials:A reversible phase transition driven by broadband visible light, Appl. Energy 113(2014) 59-66. [33] Y. Zuo, J. Hoigné, Photochemical decomposition of oxalic, glyoxalic and pyruvic acid catalysed by iron in atmospheric waters, Atmos. Environ. 28(1994) 1231-1239. [34] M.G. Neumann, C.C. Schmitt, I.C. Rigoli, The photoinitiation of MMA polymerization in the presence of iron complexes, J. Photochem. Photobiol. A 159(2003) 145-150. [35] X. Guo, A. Weiss, M. Ballauff, Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization, Macromolecules 32(1999) 6043-6046. [36] C.S. Chern, Y.C. Liou, Styrene miniemulsion polymerization initiated by 2, 2-azobisisobutyronitrile, J. Polym. Sci. A 37(2000) 2537-2550. [37] F. Wu, N.N. Deng, Photochemistry of hydrolytic iron (Ⅲ) species and photoinduced degradation of organic compounds. A minireview, Chemosphere 41(2000) 1137-1147. [38] J. Giro-Paloma, M. Martínez, L.F. Cabeza, A.I. Fernández, Types, methods, techniques, and applications form icroencapsulated phase change materials (MPCM):A review, Renew. Sust. Energ. Rev. 53(2016) 1059-1075. [39] Y. Wang, H. Ji, H. Shi, T. Zhang, T.D. Xia, Fabrication and characterization of stearic acid/polyaniline composite with electrical conductivity as phase change materials for thermal energy storage, Energy Convers. Manag. 98(2015) 322-330. [40] J. Iqbal, Z. Ali, M. Hussain, R. Sheikh, K. Majeed, U. Khan, J. Ulrich, Formation of crystalline particles from phase change emulsion:Influence of different parameters, Chin. J. Chem. Eng. 24(2016) 929-936. [41] G. Alva, Y. Lin, L. Liu, G. Fang, Synthesis, characterization and applications of microencapsulatedphase change materials in thermal energy storage:A review, Energy Build. 144(2017) 276-294. [42] V. Kumar, B. Kandasubramanian, Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications, Particuology 27(2016) 1-28. [43] C. Jiao, B. Ji, D. Fang, Preparation and properties of lauric acid-stearic acid/expanded perlite composite as phase change materials for thermal energy storage, Mater. Lett. 67(2012) 352-354. [44] A. Karaipekli, A. Sari, Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage, Sol. Energy 83(2009) 323-332. [45] A. Sari, C. Alkan, A.N. Özcan, Synthesis and characterization of micro/nano capsules of PMMA/capric-stearic acid eutectic mixture for low temperature-thermal energy storage in buildings, Energy Build. 90(2015) 106-113. [46] S.Y. Wu, D.S. Zhu, X.R. Zhang, J. Huang, Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM), Energy Fuel 24(2010) 1894-1898. 1532 T. Zhang et al./Chinese Journal of Chemical Engineering 25(2017) 1524-1532 |